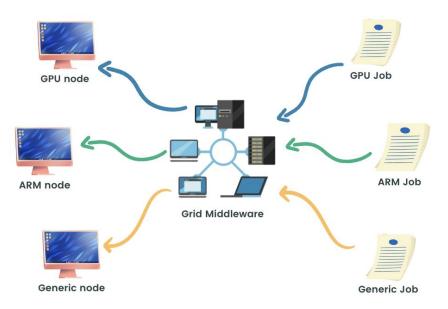
Introduction of dynamic job matching optimization for Grid middleware using Site Sonar infrastructure monitoring


Kalana Wijethunga^{1,2}, Costin Grigoras¹, Latchezar Betev¹, Indika Perera²

CERN¹, University of Moratuwa²

What?

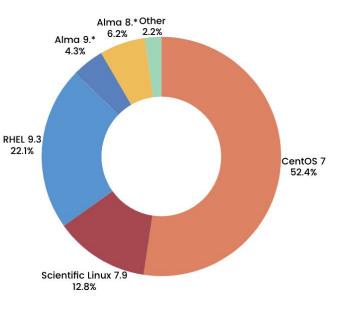
- Context : Optimized job matching in Grid middleware domain
- Currently, we can match jobs based on few attributes only
 - CPU Cores
 - Memory
 - Disk Space
- What if we need more attributes?
 - Specific GPU model
 - CPU Architecture
 - Software Versions
- We propose an enhanced approach to match jobs to the most suitable worker node

Why?

- User requirements are getting more diverse
 - \circ \quad Coprocessing on different nodes with GPUs multiple talks on

this

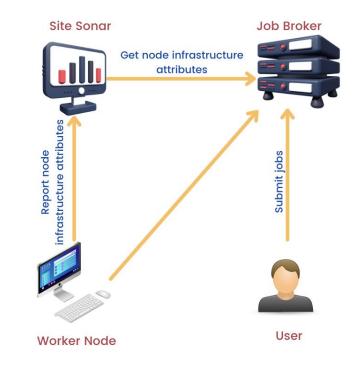
- New workloads optimized for ARM (aarch64)
- Resources with special infrastructures are limited
 - Only a few Grid sites have GPUs (<10 in ALICE Grid)
 - Only few sites are ARM based etc. (only 1 in ALICE Grid)
- Available resources are not optimally used
 - Above sites run all jobs at the moment
 - Special infrastructure is kept idle


How?

• Using Site Sonar - Infrastructure monitoring tool for ALICE

Grid

- Can monitor any infrastructure attribute of any worker node in the Grid
- Provide complete picture of available infrastructure
 - Centrally stored and visualized with ELK



Operating system distribution of ALICE Computing Grid

Result

- Site Sonar integrated into the ALICE Grid middleware JAliEn
- Built-in monitoring to node infrastructure
- Job matching possible based on any infrastructure attribute of the worker node
- No code update necessary for JAliEn for this

Thank You

kalana.wijethunga@cern.ch,

kalana.16@cse.mrt.ac.lk