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Abstract. Theoretical predictions for high-energy collision processes at particle colliders,
such as the Large Hadron Collider (LHC), rely on calculations in perturbative Quantum
Chromodynamics (QCD), which are often computationally challenging. In these conference
proceedings, we explore the possibility of using quantum computers to simulate QCD processes
in the perturbative QCD regime. In particular, as a first step towards that goal, we present
quantum circuits to simulate the colour part of perturbative QCD. The circuits are validated
by implementing them on a simulated quantum computer and verifying the colour factors for
several example Feynman diagrams.

1 Introduction
Particle physics studies the smallest and most fundamental particles that constitute the universe. A large
portion of our knowledge in this field comes from studying particle collisions at high-energy colliders, such
as the Large Hadron Collider (LHC). One of the major components of the LHC research programme is
the high-precision measurement of production rates for a wide variety of processes. To best exploit
these high-precision measurements, it is vital that theoretical predictions of comparably high precision
are produced. Comparing these theoretical predictions against the experimental measurements from
the LHC can validate the Standard Model of Particle Physics, improve our understanding of subatomic
physics, and potentially provide early clues about new particles or phenomena beyond the Standard
Model.

Since the LHC collides hadrons (usually protons), theoretical predictions for LHC processes must
employ Quantum Chromodynamics (QCD), the theory of the strong force governing the interactions of
hadrons. One obvious approach to QCD calculations would be to directly simulate the quantum fields
on a space-time lattice. It was mentioned in another talk at this conference that modern state-of-the-art
multi-petaflop supercomputer-based lattice QCD simulations implement around 96− 192 lattice sites in
each of the 4 space-time directions. Since the LHC probes energy scales that are O(103 − 104) times
larger than the QCD scale ΛQCD ∼ 0.2 GeV, lattice-based predictions at the highest LHC energies would
require thousands of lattice sites in each of the 4 space-time direction. This is likely to remain infeasible
for the foreseeable future, as the computational cost of lattice-based simulations scales as a large power
(typically at least 6 or 7) of the lattice spacing.

Fortunately, at these high energies the QCD coupling parameter αs becomes small and so it becomes
possible to perform perturbative calculations, whereby instead of simulating quantum fields on a lattice,
theoretical predictions for observables (such as particle production rates) are directly calculated in the
form of perturbative series in αs. These perturbative calculations have been widely successful in predicting
the production rates and kinematics of a broad range of high-energy processes at the LHC. The precision
and accuracy of such predictions generally improves with the perturbative order in αs, but so does the



computational complexity: indeed past experience shows a typical elapse of 1-2 decades to add one new
order in αs to the prediction of a given observable. These computational obstacles present a key limiting
factor in the precision of theoretical predictions for colliders, and so new calculational techniques and
technologies are constantly being sought.

In this conference proceedings paper, based on our article [1] and related proceedings [2], we explore
whether quantum computers in the future could help perform perturbative QCD calculations. In partic-
ular, as a first step towards this goal, we focus on using quantum computers to simulate the colour part
of perturbative QCD.

Quantum computers [3, 4], which operate by manipulating the wavefunctions of quantum-mechanical
systems, are of interest because they are anticipated to provide a better cost scaling than classical
computers, for certain problems. Although examples of proposed applications exhibiting speed-ups are
limited in number at present, they include impressive examples like an exponential speed-up for prime
factorisation [5] and quadratic speed-ups for so-called “unstructured search” problems [6], the latter
class encompassing many computational problems that are otherwise solved by brute force (ranging
from Monte Carlo integration to the mining of cryptocurrencies). Another proposed application is the
use of one quantum computer to simulate another quantum system, such as in computational quantum
chemistry [7, 8], condensed matter physics [9, 10], and lattice QCD [11, 12].

Although recent years have seen many proposals (reviewed in Refs [11, 12]) for using quantum com-
puters to simulate lattice QCD, the possibility of performing quantum simulations of perturbative QCD
has remained largely unexplored, with the exception of some work on parton showers [13–16]. Part of the
reason for this may be that the aims of perturbative QCD are different from those of most quantum sim-
ulations: the latter (including lattice QCD) seek to calculate the time evolution of a known Hamiltonian,
whereas perturbative QCD calculations seek to calculate the (Hermitian but not necessarily unitary)
transition matrices describing the scattering of pre-determined initial and final states.

The aim of the work reported in this proceedings paper (and first reported in our article [1] to which
we refer the reader for more comprehensive explanations) is to take the first steps towards the quantum
simulation of generic perturbative QCD processes, by presenting quantum computing circuits to simulate
the colour part of perturbative QCD calculations. The colour part was chosen as a useful starting
point because it involves smaller Hilbert spaces than the kinematic parts, and therefore provides a good
simplified setup with which to develop generic techniques and strategies that can in the future be built
upon to implement the kinematic parts of the calculation.

There are several specific motivations for seeking to use quantum computers to simulate perturbative
QCD. One motivation is that perturbative QCD requires the quantum-coherent combination of contribu-
tions from many unobservable intermediate states, making it a natural candidate to exploit the ability of
a quantum computer to manipulate superpositions of quantum states. Processes with high-multiplicity
final states in particular could benefit from such calculations. Another motivation is investigating the
possibility to improve the speed or precision of perturbative QCD predictions by exploiting known quan-
tum algorithms such as quantum amplitude estimation [17–20] and quantum Monte Carlo integration
(see Ref. [21] and references therein).

Research on this topic is timely. After several decades of incremental progress in hardware and algo-
rithms, recent years have seen companies such as IBM, Google, and Microsoft making large investments,
producing hardware with up to a few hundred qubits (albeit prone to noise and lacking full connectivity
between qubits), and aspiring to develop larger error-corrected quantum computers over a timespan of
around a decade. For this reason, many applications have been proposed in various areas of high-energy
physics [1, 13–16, 21–47].

2 Quantum circuits for colour
In this section we will present quantum circuits that simulate the colour part of perturbative QCD.
The circuits are based on qubits, i.e. two-state quantum systems (such as spin half particles), which are
represented pictorially by a quantum circuit diagram in which each qubit is drawn as a horizontal line.
The qubits are manipulated by performing operations, which are called gates by analogy to the and and
or gates of classical computing. A gate acting on n qubits is defined by a 2n-by-2n matrix acting on
the 2n-dimensional state space of those qubits. Since quantum mechanical operations are unitary, these
matrices must be unitary.

Perturbative QCD calculations are often performed with the help of Feynman diagrams, with each
diagram representing a contribution to the scattering amplitude (which is related to the transition matrix)
for a given process. Given a Feynman diagram, the corresponding term in the scattering amplitude
contains a factor T a

ij for each quark-gluon vertex, and a factor fabc for each triple-gluon vertex, where



T a
ij are the generators of the Lie algebra su(3) in the defining representation and fabc are the structure

constants of su(3). Besides these colour factors, kinematic factors would normally also be required but
they are neglected in this work as mentioned above. As an example, the colour factor of the Feynman
diagram shown on the left of Fig. 1 is

C =
∑

a∈{1,...,8}
i,j,k∈{1,2,3}

T a
ijT

a
jkδik, (1)

where the Feynman rules for the diagram require us to sum over intermediate states j ∈ {1, 2, 3} and
a ∈ {1, . . . , 8}, and in this case we have further opted to trace over the initial colour i and final colour k
of the quark line.

The generators T a
ij are linear operators, which are conventionally written in terms of the well-known

Gell-Mann matrices λa by defining T a = 1
2λ

a. Recalling that quantum gates are required to be linear
operators, it is natural to ask whether the generators T a

ij can be implemented as quantum gates and
thus be used to simulate the colour part of quark-gluon interactions. As we will see, this can indeed be
achieved although there are some obstacles. One is that the Gell-Mann matrices are not of the form 2n-
by-2n, which would be desirable for the reasons described at the start of this section. Another obstacle
is that Gell-Mann matrices are not unitary, but are instead Hermitian. Our main article [1] includes
explanations of how these issues are resolved.

The key results of this work are two quantum gates, G and Q, which simulate, respectively, the colour
parts of the triple-gluon interaction and the quark-gluon interaction in perturbative QCD. By combining
several of these gates, the colour parts of entire Feynman diagrams can be simulated. This conference
proceedings paper will only give an illustrative example of how these gates can be assembled together,
and we refer the interested reader to our main article [1] for more comprehensive explanations as well as
details about the explicit construction of the G and Q gates.

A gluon has 8 basis colour states, which we represent using the 23 = 8 basis states of a register of 3
qubits. A quark has 3 basis colour states, which we represent using 3 of the 22 = 4 basis states of a pair
of qubits, while the 4th basis state remains unused.

The Q gate acts on a 3-qubit register representing a gluon and a 2-qubit register representing a quark,
as well as a register U containing a few extra qubits whose purpose will be described below. The Q gate
is designed such that if the gluon register is in a basis state |a⟩g, where a ∈ {1, . . . , 8}, and the quark

register is in a basis state |k⟩q, where k ∈ {1, 2, 3}, and the U register is in a special reference state |Ω⟩U ,
then

Q |a⟩g |k⟩q |Ω⟩U =

3∑
j=1

T a
jk |a⟩g |j⟩q |Ω⟩U + (terms orthogonal to |Ω⟩U ) . (2)

If any of the registers are in superpositions of colour basis states or are entangled with other registers in
the circuit, the Q gate acts linearly on each element of the wavefunction, since quantum gates are linear.
The Q gate can be seen to implement the Feynman rule for a quark line that emits or absorbs a gluon.
Note that while a circuit will in general contain several quark and gluon registers, it only contains a single
U register. The purpose of the latter is to allow unitary gates like Q to be constructed to implement, in
the sense of eq. (2), linear but non-unitary operators like T a

ij . We therefore refer to U as the unitarisation
register. Note that the size of U is small: it is logarithmic in the number of vertices in the Feynman
diagram.

Similarly to the Q gate, the triple-gluon gate G is designed to act on any 3 gluon registers g1, g2, g3
(each composed of 3 qubits as explained above) in colour basis states |a⟩g1 , |b⟩g2 , |c⟩g3 in the following
way:

G |a⟩g1 |b⟩g2 |c⟩g3 |Ω⟩U = fabc |a⟩g1 |b⟩g2 |c⟩g3 |Ω⟩U + (terms orthogonal to |Ω⟩U ) , (3)

where U is again the same register which appeared in eq. (2) and |Ω⟩U is the same special reference state as
before. Equations (2) and (3) can be interpreted to mean that when projected onto the special reference
state |Ω⟩U of the unitarisation register, the Q and G gates simulate the colour parts of a quark-gluon
interaction and a triple-gluon interaction, respectively.

3 Illustrative example
In this section we present an example to illustrate how the gates from section 2, in particular Q, can
be used to simulate the colour factor for a simple Feyman diagram. A generalisation to arbitrarily
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Figure 1: Example Feynman diagram (left) and a graphical representation of its corresponding circuit
(right).

complicated diagrams will be given in sec. 4. Let us consider the Feynman diagram which is shown in
Fig. 1. The diagram has one gluon and one quark. As was mentioned above, the colour of a gluon
is represented by 3 qubits and the colour of a quark is represented by 2 qubits. However, there is a
complication: in order to be able to compute the trace, we always introduce for each quark line a pair of
2-qubit registers q and q̃, instead of just a single 2-qubit register. The extra register q̃ is not affected by
the simulation gates Q or G; the only purpose for q̃ is to enable the trace to be computed, as we will see.

Initially, the circuit is in a reference state |Ω⟩g |Ω⟩q |Ω⟩q̃ |Ω⟩U , where |Ω⟩r indicates that each qubit of

a register r is in the state |0⟩. Next, a gate Rg is applied to the gluon register to place it in an equal
superposition of colour basis states:

Rg |Ω⟩g =

8∑
a=1

1√
8
|a⟩g . (4)

The explicit form of Rg is omitted here but it can be found in the Appendix of our main article [1]. Next,
the gate Rq (which is also defined in the Appendix of Ref. [1]) is applied to the pair of quark registers as
follows:

Rq |Ω⟩q |Ω⟩q̃ =

3∑
k=1

1√
3
|k⟩q |k⟩q̃ . (5)

Here it can be observed that the q and q̃ registers are entangled. Thus, after applying the Rg and Rq

gates, the quantum computer is in the following state:

1√
24

8∑
a=1

3∑
k=1

|a⟩g |k⟩q |k⟩q̃ |Ω⟩U . (6)

We will now perform the key simulation steps, by applying two Q gates which correspond directly to
the two interaction vertices shown in the Feynman diagram in Fig. 1. As already mentioned, the Q never
acts on the q̃ register. It can be seen with the help of eq. (2) that after applying the first Q gate, the
state of the quantum computer becomes

1√
24

∑
a∈{1,...,8}
j,k∈{1,2,3}

T a
jk |a⟩g |j⟩q |k⟩q̃ |Ω⟩U + (terms orthogonal to |Ω⟩U ) (7)

and after applying a second Q gate, the state becomes

1√
24

∑
a∈{1,...,8}

i,j,k∈{1,2,3}

T a
ijT

a
jk |a⟩g |i⟩q |k⟩q̃ |Ω⟩U + (terms orthogonal to |Ω⟩U ) . (8)

While this bears a resemblance to the desired colour factor in eq. (1), it should be noted that C is not
immediately accessible from this state. In particular, the state contains a sum over a but each term
T a
ijT

a
jk multiplies a distinct state |a⟩g of the gluon register, which means that the desired summation∑

a T
a
ijT

a
jk has not yet been performed.



In order to perform the desired sum, we can first observe by inverting eq. (4) that if a circuit is

constructed for R−1
g and is applied to any state

∑8
a=1 ca |a⟩g of the gluon register, it would produce the

state

R−1
g

8∑
a=1

ca |a⟩g =

(
1√
8

8∑
a=1

ca

)
|Ω⟩g +

(
terms orthogonal to |Ω⟩g

)
, (9)

which effectively averages over the coefficients of the 8 colour basis states |a⟩g. Similarly, it can be seen

by inverting eq. (5) that a gate R−1
q acting on any state

∑
i,k∈{1,2,3} cik |i⟩q |k⟩q̃ of the q and q̃ registers

would produce the state

R−1
q

∑
i,k∈{1,2,3}

cik |i⟩q |k⟩q̃ =

(
1√
3

3∑
i=1

cii

)
|Ω⟩q |Ω⟩q̃ +

(
terms orthogonal to |Ω⟩q |Ω⟩q̃

)
, (10)

effectively thereby performing a trace over quark colours. Note that tracing over external colours is not
essential, but we have chosen to do so for simplicity as it allows each Feynman diagram to be validated
by comparing a single number to the output of our quantum circuits.

Thus, after we have applied the gates R−1
g and R−1

q to the state that was produced in eq. (8), we
obtain the following state:

1

24

 ∑
a∈{1,...,8}
i,j∈{1,2,3}

T a
ijT

a
ji

 |Ω⟩g |Ω⟩q |Ω⟩q̃ |Ω⟩U +
(
terms orthogonal to |Ω⟩g |Ω⟩q |Ω⟩q̃ |Ω⟩U

)
. (11)

It can be seen that in this state, the coefficient of the original reference state |Ω⟩g |Ω⟩q |Ω⟩q̃ |Ω⟩U encodes

the colour factor (1) of the diagram. The factor 1
24 in eq. (11) is a normalisation that depends on the

number of quarks and gluons but does not depend on how they are connected in a particular Feynman
diagram. In the next section we will explain how the example from this section can be generalised to
arbitrarily more complicated diagrams by adding more qubits and more Q and G gates.

4 Calculating the colour factor of arbitrary Feynman diagrams
The illustrative example from sec. 3 can be generalised to calculate colour factors for Feynman diagrams
with arbitrary numbers of quarks and gluons. Given an arbitrary Feynman diagram with Nq quark lines
and Ng gluons, the procedure is as follows:

1. Create a quantum circuit with a 3-qubit gluon register g for each gluon, a pair of 2-qubit quark
registers q, q̃ for each quark line, and a single unitarisation register U .

2. Initialise each register r to a reference state |Ω⟩r in which each qubit is in the state |0⟩.
3. For each gluon, apply Rg to the corresponding register g.

4. For each quark line, apply Rq to the corresponding pair of registers q, q̃.

5. For each quark-gluon vertex, apply a Q gate to the corresponding registers g and q.

6. For each triple-gluon vertex, apply a G gate to the 3 corresponding g registers.

7. For each gluon, apply R−1
g to the corresponding gluon register.

8. For each quark, apply R−1
q to the corresponding pair of quark registers q, q̃.

As was the case in the illustrative example in sec. 3, the colour factor C for the diagram is now found
encoded in the final state of the quantum computer, which is

1

N C |Ω⟩all + (terms orthogonal to |Ω⟩all) , (12)

where N = N
nq
c

(
N2

c − 1
)ng

is an overall normalisation and

|Ω⟩all =
(

ng∏
m=1

|Ω⟩gm

)(
nq∏
l=1

|Ω⟩ql |Ω⟩q̃l

)
|Ω⟩U . (13)



5 Validation
The methods of this work were validated by implementing the circuits using the IBM Qiskit [48] frame-
work. Various circuits were then constructed, each corresponding to a different example of a Feynman
diagram shown in Table 1. These circuits were run on a noiseless simulated quantum computer, using up
to 30 simulated qubits. Each circuit was run 108 times and the output was measured and used to infer
the colour factor C from the fraction of times that the output state was measured to be |Ω⟩all. While this
is a straight-forward means to verify that the circuits are functioning correctly, we emphasise that the
number of runs required to achieve a given precision can be significantly improved by suitably modifying
the circuits and measurement schemes. Indeed, ongoing follow-up work, which will be reported in a
future publication, indicates that it may be straight-forward to achieve the same precision for C using
quadratically fewer runs. Further improvements may also be possible using schemes such as quantum
amplitude estimation [17–20], which offers a quadratic speed-up over naive measurements.

6 Summary and Outlook
In these conference proceedings, which are based on our article [1] and related proceedings [2], we have
presented quantum computing circuits to simulate the colour part of perturbative QCD. As an example
application, we showed how these circuits can be used to calculate the colour factors for arbitrary Feynman
diagrams. We implemented the circuits on a simulated noiseless quantum computer and verified them
against the analytic expectation for the colour factors of various examples of Feynman diagrams. This is
a first step towards a full quantum simulation of generic perturbative QCD processes.

The work has several avenues for follow-up work. Firstly, we are now exploring ways to use these
circuits to calculate quantum interferences of multiple Feynman diagrams. Secondly, we can build on
this work by also implementing simulations of the kinematic parts of perturbative QCD. Ultimately, we
intend this work to be used to develop a quantum-accelerated Monte-Carlo calculation of scattering rates
and cross-sections, obtaining a quadratic speed-up over classical Monte Carlo simulations.
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