
PEPPER: A Portable Parton-Level Event Generator

Enrico Bothmann1, Taylor Childers2, Walter Giele3, Stefan Höche3,
Joshua Isaacson3, and Max Knobbe1

1Institut für Theoretische Physik, Universität Göttingen, 37077 Göttingen, Germany
2Argonne National Laboratory, Lemont, IL, 60439, USA
3Fermi National Accelerator Laboratory, Batavia, IL, 60510, USA

E-mail: enrico.bothmann@uni-goettingen.de

Abstract. Parton-level event generators are one of the most computationally demand-
ing parts of the simulation chain for the Large Hadron Collider. The rapid deployment
of computing hardware different from the traditional CPU+RAM model in data cen-
ters around the world mandates a change in event generator design. These changes are
required in order to provide economically and ecologically sustainable simulations for
the high-luminosity era of the LHC. We present a complete leading-order parton-level
event generation framework capable of utilizing most modern hardware, and discuss its
performance in standard-candle processes at the LHC.

1 Introduction
The upcoming high-luminosity era at the LHC (HL-LHC) will provide unprecedented collision data
statistics. Monte-Carlo event generators (MCEG) provide simulated collision event samples that can
be directly compared to the experimental data samples, e.g. to predict signals, subtract backgrounds,
calibrate detectors, or extract model parameters. Due to the expected excellent experimental precision,
poor MCEG computing performance can limit experimental success of the HL-LHC [1, 2].

Most of the computing time spent on MCEG by the ATLAS and CMS collaborations comes from
the regular production of large pp → V + jets and pp → tt̄ + jets event samples [3]. We can dub them
“heavy-hitter” processes due to their dominant computational footprint. With their relatively large cross
sections, even when requiring a number of extra jets, and with their generic final-state signature, a large
number of physics analyses rely on their statistical precision in the respective relevant phase-space regions.

Where more detailed performance studies for standard simulation setups of those heavy-hitter pro-
cesses have been done, we can even nail down the components of the MCEG simulations that most
contribute to the computational footprint. For Sherpa [4], we know that more than two thirds of the
computing time is spent on the evaluation of squared tree-level matrix elements, while squared loop
matrix elements contribute at most about 10% [5]. Everything else, such as PDF evaluation, parton
showering or hadronization only contribute a few percent each and are at this point irrelevant as targets
for further performance improvements.

Tree-level matrix elements contribute most in these setups, because the standard multijet merged sam-
ples include matrix elements for up to n = 5 (n = 4) additional jets for pp → V +jets (pp → tt̄+jets), and
the highest-multiplicity matrix elements are only evaluated at leading order, since next-to-leading-order
(NLO) matrix elements would be prohibitively expensive. Tree-level matrix element algorithms scale at
best with O(n3) [6], and the unweighting efficiency of these high multiplicities are very low (one may
need to calculate tens or hundreds of thousands of matrix elements before accepting an event for these
multiplicities [7]). The two thirds of the overall computing time mentioned above is therefore dominated
by the one or two highest-multiplicity tree-level matrix elements and their phase-space generation. Im-
proving the performance of this component can therefore reduce the overall computing budget for these

processes by up to a factor of three. The proxy figure of merit for these improvements would be the
unweighted event generation throughput for pp → e+e− + 5 jets and pp → tt̄+ 4 jets.

In this contribution, we present the portable standalone tree-level matrix-element generator Pepper,
which can be compiled to use GPU accelerators achieving much higher event throughputs compared to
using the CPU only, and allowing us to fully utilize the current and upcoming generation of exascale
high-performance computing (HPC) resources.

Details on the first production-ready release of Pepper are given in [8]. Other efforts to port parts of
the MCEG toolchain are the Madgraph5 aMC@NLO on GPU project [9], the MadFlow project [10],
and the Gaps parton-shower [11]. An outline of a future common benchmarking of Pepper and Mad-
graph5 aMC@NLO on GPU has been given in [12, Chap. II, Sec. 4].

2 Methods
Pepper can be compiled for single-threaded CPU execution, for multi-threaded CPU execution, and for
execution on a GPU device. This is achieved with a single codebase and using the Kokkos C++ Per-
formance Portability framework [13, 14] (we also maintain a CUDA version for performance comparison
studies). Below, we will often discuss the parallelisation of different event generation steps; this of course
only applies when the code has been compiled for multiple threads, otherwise the algorithms run serially
on a single thread.

In Pepper, each computing thread generates one event. Thus a batch of events is generated in
parallel if more than one thread is available. To ensure data locality (and coalescent GPU memory
reads/writes [15]), the event batch data is implemented as a structure of arrays, i.e. each event property
(e.g. the event weight, or the energy component of the momentum of the first outgoing particle) is stored
contiguously in memory for all events in the batch.

The first step in event generation is to generate the required random numbers for the Monte-Carlo
integration. In Pepper, all random numbers required for a single event batch are generated in parallel,
before proceeding with the rest of the event generation pipeline.

The next step is to generate a phase-space point for each event in the batch. We use a simple phase-
space algorithm, Chili [16], which parametrizes phase-space using a single t-channel and an adjustable
number of s-channel resonances. The internal implementation supports up to one s-channel (e.g. for the
Z resonance in Drell-Yan production), and is executed in parallel; we call this the “Basic Chili”. The
random number mapping is optimized using Vegas [17].

The simulation then proceeds to evaluate the parton density functions (for hadronic collisions) and
the strong coupling. This is done via a modified version of the Lhapdf library [18], which allows multi-
threaded execution using Kokkos and/or CUDA.

The squared matrix elements at tree level are then evaluated in parallel using Berends-Giele recursion
relations [19] to provide a good scaling behavior with the final-state multiplicity. We combine helicity
sampling and colour summing with a minimal colour basis to achieve optimal GPU performance [20, 21].

At this point of the simulation, we optionally apply a hit-or-miss algorithm in parallel if the user has
requested an unweighted event sample. Given the typically low efficiencies at the relevant jet multiplici-
ties, only a small number of events is accepted. When event generation is done on a GPU with its own
RAM, this has the additional benefit that we only need to copy the data for these non-zero events to
the host CPU, such that the copy time becomes relatively small compared to the evaluation time of the
matrix elements. Since all event generation steps are done in parallel, we only need to copy data between
the CPU and the GPU once, at the end of the event batch generation pipeline.

The events can then be written to disk using the HepMC3 [22], Lhef3 [23] Lheh5 [7, 24] output
formats. The latter is based on the Hdf5 [25] database library which allows for efficient writing of large
event files and which features collective MPI writing for a good scaling behaviour on large HPC clusters.
Lhef3 and Lheh5 event files can be read in by Sherpa and Pythia [26, 27] for additional particle-level
simulation steps, thus integrating Pepper into the full event simulation toolchain. The Lheh5 files can
even be used as input samples in multi-jet merged simulations in Sherpa [24].

3 Results
Before highlighting results of Pepper, we plot results given in [16] for the unweighting efficiency achiev-
able with the Chili phase-space generator combined with Vegas optimization. Figure 1 compares the
full Chili generator, labeled “Chili”, with one that uses the minimal number of s-channels (1 for W+

and Z production, 0 otherwise), labeled “Basic”, with the efficiency of the recursive phase-space genera-
tor implemented in Sherpa [28] for various benchmark LHC processes. The obtained Chili efficiencies
are similar to the Sherpa efficiency, or higher by up to an order of magnitude, with the exceptions of
γ + n jets production and for W+ + 5 jets production. See [16] for additional details.

1 2 3 4 5

10
−1

10
0

10
1

U
n
w

.
eff

.
ra

ti
o

to
S

H
E

R
P

A

W
+

+ n jets

1 2 3 4 5

Z + n jets

1 2 3 4 5

S
h
e
r
p
a
+

C
h
il

i
M

C

h + n jets

Chili

Basic

0 1 2 3 4

n

10
−1

10
0

10
1

tt̄ + n jets

1 2 3 4 5

n

γ + n jets

2 3 4 5 6

n

n jets

Figure 1: Results for the unweighting efficiency with the Chili phase-space generator in its normal and
“Basic” mode, comparing to the recursive phase-space generator of Sherpa. Data taken from [16].

MEvents / hour 2×Skylake8180 V100 A100 H100 MI100 MI250 PVC

pp → tt̄+ 4j 0.06 0.5 1.0 1.7 0.4 0.3 0.3
pp → e−e+ + 5j 0.003 0.03 0.05 0.1 0.03 0.03 0.02

Table 1: Parallel unweighted event generation rates of Pepper, comparing multi-threaded CPU evalua-
tion (2×Skylake8180, using all 56 threads) with GPU accelerated evaluation on various data-center GPU
by Nvidia (V100, A100, H100), AMD (MI100, MI250) and Intel (PVC). Results taken from [8].

In Fig. 2, we show the single-threaded CPU performance for the unweighted event generation through-
put of Pepper for pp → e+e−+n jets and pp → tt̄+n jets, as first published with all details on the setup
in [8]. This single-threaded throughput gives the baseline performance of Pepper, without any parallel
execution. The throughput is compared with Comix [28], both using its recursive phase-space generator,
and using an implementation of Chili in Sherpa. The throughput of Pepper is on par or higher, by
up to an order of magnitude.

Finally, Tab. 1 gives the results for the unweighted event generation throughput for the highest
jet multiplicities with parallel evaluation on various CPU (Intel Skylake8180) and GPU architectures
(Nvidia V100, A100 and H100; AMD MI100 and MI250; and Intel PVC GPU). For the details on the
computational setup and for results for the lower jet multiplicities, see [8]. The evaluation on the Skylake
CPU utilizes all 56 cores. We find speedups of about a factor of thirty when comparing the highest
throughput on the H100 GPU, compared to the lowest throughputs on the Skylake CPU.

4 Discussion
Pepper provides excellent unweighting efficiency via a portable implementation of the Chili phase-space
generator, and very good single-threaded event generation throughput for the heavy-hitter processes
pp → e+e− + n jets and pp → tt̄ + n jets at tree level. As a portable code building on the Kokkos
portability framework it can be compiled for multi-threaded evaluation on CPU and for highly parallel
evaluation using GPU acceleration. All components of the code but the eventual event output are
parallelized and execute on the GPU device if available, providing speed-up factors of e.g. up to 30 when
compared to multi-threaded evaluation on a CPU only. It thus eliminates the identified main bottleneck
of tree-level event generation when generating particle-level Sherpa samples for the above processes, since
the parton-level event generation can be completely offloaded to Pepper via Sherpa’s Lheh5 read-in
capability [24]. This strategy would reduce the computational footprint by about a factor of three for
these processes.

1 2 3 4 5

n

10
0

10
1

U
n
w

.
ev

en
t

ra
te

re
l.

to
C

o
m

ix
∗

(d
ef

.)

µ
2
R = µ

2
F = m

2
Z

66 GeV ≤ me
+
e
− ≤ 116 GeV

p⊥,j ≥ 20 GeV, |ηj | ≤ 5, ∆Rjj ≥ 0.4

P
e
p
p
e
r

M
C

pp→ e
+
e
−

+ n jets at
√
s = 13 TeV

Comix
∗

(def.)

Comix
∗

(Chili)

Pepper

0 1 2 3 4

n

10
0

10
1

µ
2
R = µ

2
F = m

2
t

p⊥,j ≥ 20 GeV, |ηj | ≤ 5, ∆Rjj ≥ 0.4

P
e
p
p
e
r

M
C

pp→ tt̄+ n jets at
√
s = 13 TeV

Figure 2: Single-threaded CPU unweighted event generation rates of Pepper, comparing to Sherpa
using its default recursive phase-space generator (“def.”) and a Sherpa-internal implementation of
Chili. Figure taken from [8].

Note that [8] also studies Pepper’s MPI scaling behaviour when using up to 512 A100 GPU, and
presents preliminary results for using portable CPU vector instructions. In [29], a study utilizing Pep-
per shows that the numerical stability of the matrix-element evaluation near the infrared limit can be
greatly enhanced by the novel algorithms presented therein, reaching a higher precision with double
precision arithmetics compared to a naive quadruple precision implementation, at a smaller computa-
tional cost. GPU acceleration combined with this improved numerical stability opens a new avenue for
efficient NNLO calculations, as the computational footprint of the expensive tree-level parts (real-real
emissions) is strongly reduced by these techniques, and makes ad-hoc or expensive countermeasures for
numerical instabilities like outlier rejection, artificial infrared cut-offs, or higher-precision rescue systems
unnecessary.

Finally, we note that Chili and Pepper provide new opportunities for ML applications to phase-space
generation [30, 31, 32, 33, 34, 35, 16] and matrix-element surrogates [36, 37]. Chili’s simple structure with
a very small number of channels reduces the dimensionality for learning efficient phase-space mappings,
and the availability of the evaluation of both the phase-space and the matrix elements on a GPU device
greatly improves the speed of training new models, compared to single-threaded evaluations on a CPU.

5 Acknowledgements
This research was supported by the Fermi National Accelerator Laboratory (Fermilab), a U.S. Depart-
ment of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance,
LLC (FRA), acting under Contract No. DE–AC02–07CH11359. The work of M.K. and J.I. was sup-
ported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Scientific Discovery through Advanced Computing (SciDAC-5) program, grant “NeuCol”. This
research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science
User Facility under Contract DE-AC02-06CH11357. The work of T.C. and S.H. was supported by the
DOE HEP Center for Computational Excellence. E.B. and M.K. acknowledge support from BMBF (con-
tract 05H21MGCAB). Their research is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 456104544; 510810461. E.B. acknowledges conference travel support by the Uni-
versitätsbund Göttingen e.V. This work used computing resources of the Emmy HPC system provided
by The North-German Supercomputing Alliance (HLRN). M.K. wishes to thank the Fermilab Theory
Division for hospitality during the final stages of this project. This research used the Fermilab Wilson
Institutional Cluster and computing resources provided by the Joint Laboratory for System Evaluation
(JLSE) at Argonne National Laboratory. We are grateful to James Simone for his support.

References
[1] HSF Physics Event Generator WG Collaboration, S. Amoroso et al., “Challenges in Monte

Carlo Event Generator Software for High-Luminosity Lhc,” Comput. Softw. Big Sci. 5 no. 1,
(2021) 12, arXiv:2004.13687 [hep-ph].

[2] HSF Physics Event Generator WG Collaboration, E. Yazgan et al., “Hl-Lhc Computing
Review Stage-2, Common Software Projects: Event Generators,” arXiv:2109.14938 [hep-ph].

[3] ATLAS Collaboration, G. Aad et al., “Modelling and Computational Improvements to the
Simulation of Single Vector-Boson Plus Jet Processes for the Atlas Experiment,” JHEP 08 (2022)
089, arXiv:2112.09588 [hep-ex].

[4] Sherpa Collaboration, E. Bothmann et al., “Event Generation with Sherpa 2.2” SciPost Phys. 7
no. 3, (2019) 034, arXiv:1905.09127 [hep-ph].

[5] E. Bothmann, A. Buckley, I. A. Christidi, C. Gütschow, S. Höche, M. Knobbe, T. Martin, and
M. Schönherr, “Accelerating LHC event generation with simplified pilot runs and fast PDFs,” Eur.
Phys. J. C 82 no. 12, (2022) 1128, arXiv:2209.00843 [hep-ph].

[6] P. Draggiotis, R. H. P. Kleiss, and C. G. Papadopoulos, “On the Computation of Multigluon
Amplitudes,” Phys. Lett. B 439 (1998) 157–164, arXiv:hep-ph/9807207.

[7] S. Höche, S. Prestel, and H. Schulz, “Simulation of Vector Boson Plus Many Jet Final States at the
High Luminosity LHC,” Phys. Rev. D 100 no. 1, (2019) 014024, arXiv:1905.05120 [hep-ph].

[8] E. Bothmann, T. Childers, W. Giele, S. Höche, J. Isaacson, and M. Knobbe, “A Portable
Parton-Level Event Generator for the High-Luminosity LHC,” arXiv:2311.06198 [hep-ph].

[9] S. Hageboeck, T. Childers, W. Hopkins, O. Mattelaer, N. Nichols, S. Roiser, J. Teig, A. Valassi,
C. Vuosalo, and Z. Wettersten, “Madgraph5 aMC@NLO on GPUs and vector CPUs Experience
with the first alpha release,” EPJ Web Conf. 295 (2024) 11013, arXiv:2312.02898
[physics.comp-ph].

[10] S. Carrazza, J. Cruz-Mart́ınez, M. Rossi, and M. Zaro, “Madflow: Automating Monte Carlo
Simulation on Gpu for Particle Physics Processes,” Eur. Phys. J. C 81 no. 7, (2021) 656,
arXiv:2106.10279 [physics.comp-ph].

[11] M. H. Seymour and S. Sule, “An Algorithm to Parallelise Parton Showers on a Gpu,”
arXiv:2403.08692 [hep-ph].

[12] J. Andersen et al., “Les Houches 2023: Physics at TeV Colliders: Standard Model Working Group
Report,” in Physics of the TeV Scale and Beyond the Standard Model: Intensifying the Quest for
New Physics. 6, 2024. arXiv:2406.00708 [hep-ph].

[13] H. Carter Edwards , Christian R. Trott , Daniel Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” JPDC 74 (2014)
3202–3216.

[14] C. R. Trott, D. Lebrun-Grandié, et al., “Kokkos 3: Programming model extensions for the exascale
era,” IEEE Transactions on Parallel and Distributed Systems 33 no. 4, (2022) 805–817.

[15] N. C. . affiliates, “CUDA C++ Programming Guide,”
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, 2024. [Online;
accessed 22-July-2024].

[16] E. Bothmann, T. Childers, W. Giele, F. Herren, S. Höche, J. Isaacson, M. Knobbe, and R. Wang,
“Efficient Phase-Space Generation for Hadron Collider Event Simulation,” SciPost Phys. 15 no. 4,
(2023) 169, arXiv:2302.10449 [hep-ph].

[17] G. P. Lepage, “A New Algorithm for Adaptive Multidimensional Integration,” J. Comput. Phys.
27 (1978) 192.

[18] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and
G. Watt, “LHAPDF6: parton density access in the LHC precision era,” Eur. Phys. J. C 75 (2015)
132, arXiv:1412.7420 [hep-ph].

https://dx.doi.org/10.1007/s41781-021-00055-1
https://dx.doi.org/10.1007/s41781-021-00055-1
https://arxiv.org/abs/2004.13687
https://arxiv.org/abs/2109.14938
https://dx.doi.org/10.1007/JHEP08(2022)089
https://dx.doi.org/10.1007/JHEP08(2022)089
https://arxiv.org/abs/2112.09588
https://dx.doi.org/10.21468/SciPostPhys.7.3.034
https://dx.doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
https://dx.doi.org/10.1140/epjc/s10052-022-11087-1
https://dx.doi.org/10.1140/epjc/s10052-022-11087-1
https://arxiv.org/abs/2209.00843
https://dx.doi.org/10.1016/S0370-2693(98)01015-6
https://arxiv.org/abs/hep-ph/9807207
https://dx.doi.org/10.1103/PhysRevD.100.014024
https://arxiv.org/abs/1905.05120
https://arxiv.org/abs/2311.06198
https://dx.doi.org/10.1051/epjconf/202429511013
https://arxiv.org/abs/2312.02898
https://arxiv.org/abs/2312.02898
https://dx.doi.org/10.1140/epjc/s10052-021-09443-8
https://arxiv.org/abs/2106.10279
https://arxiv.org/abs/2403.08692
https://arxiv.org/abs/2406.00708
https://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
https://dx.doi.org/10.1109/TPDS.2021.3097283
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://dx.doi.org/10.21468/SciPostPhys.15.4.169
https://dx.doi.org/10.21468/SciPostPhys.15.4.169
https://arxiv.org/abs/2302.10449
https://dx.doi.org/10.1016/0021-9991(78)90004-9
https://dx.doi.org/10.1016/0021-9991(78)90004-9
https://dx.doi.org/10.1140/epjc/s10052-015-3318-8
https://dx.doi.org/10.1140/epjc/s10052-015-3318-8
https://arxiv.org/abs/1412.7420

[19] F. A. Berends and W. T. Giele, “Recursive Calculations for Processes with N Gluons,” Nucl. Phys.
B 306 (1988) 759–808.

[20] E. Bothmann, W. Giele, S. Höche, J. Isaacson, and M. Knobbe, “Many-Gluon Tree Amplitudes on
Modern Gpus: a Case Study for Novel Event Generators,” SciPost Phys. Codeb. 2022 (2022) 3,
arXiv:2106.06507 [hep-ph].

[21] E. Bothmann, J. Isaacson, M. Knobbe, S. Höche, and W. Giele, “QCD tree amplitudes on modern
GPUs: A case study for novel event generators,” PoS ICHEP2022 (11, 2022) 222.

[22] A. Buckley, P. Ilten, D. Konstantinov, L. Lönnblad, J. Monk, W. Pokorski, T. Przedzinski, and
A. Verbytskyi, “The HepMC3 event record library for Monte Carlo event generators,” Comput.
Phys. Commun. 260 (2021) 107310, arXiv:1912.08005 [hep-ph].

[23] J. R. Andersen et al., “Les Houches 2013: Physics at TeV Colliders: Standard Model Working
Group Report,” arXiv:1405.1067 [hep-ph].

[24] E. Bothmann, T. Childers, C. Gütschow, S. Höche, P. Hovland, J. Isaacson, M. Knobbe, and
R. Latham, “Efficient precision simulation of processes with many-jet final states at the LHC,”
Phys. Rev. D 109 no. 1, (2024) 014013, arXiv:2309.13154 [hep-ph].

[25] The HDF Group, “Hierarchical Data Format, version 5,”. https://www.hdfgroup.org/HDF5/.

[26] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O.
Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2” Comput. Phys. Commun. 191
(2015) 159–177, arXiv:1410.3012 [hep-ph].

[27] C. Bierlich et al., “A Comprehensive Guide to the Physics and Usage of Pythia 8.3” SciPost Phys.
Codeb. 2022 (2022) 8, arXiv:2203.11601 [hep-ph].

[28] T. Gleisberg and S. Höche, “Comix, a New Matrix Element Generator,” JHEP 12 (2008) 039,
arXiv:0808.3674 [hep-ph].

[29] E. Bothmann, J. M. Campbell, S. Höche, and M. Knobbe, “Algorithms for numerically stable
scattering amplitudes,” arXiv:2406.07671 [hep-ph].

[30] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, and S. Schumann, “Exploring phase space with
Neural Importance Sampling,” SciPost Phys. 8 no. 4, (2020) 069, arXiv:2001.05478 [hep-ph].

[31] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, and S. Schumann, “Applying Neural
Importance Sampling to gluon scattering,” PoS LHCP2020 (2021) 056.

[32] C. Gao, S. Höche, J. Isaacson, C. Krause, and H. Schulz, “Event Generation with Normalizing
Flows,” Phys. Rev. D 101 no. 7, (2020) 076002, arXiv:2001.10028 [hep-ph].

[33] T. Heimel, R. Winterhalder, A. Butter, J. Isaacson, C. Krause, F. Maltoni, O. Mattelaer, and
T. Plehn, “Madnis - Neural Multi-Channel Importance Sampling,” SciPost Phys. 15 no. 4, (2023)
141, arXiv:2212.06172 [hep-ph].

[34] T. Heimel, N. Huetsch, F. Maltoni, O. Mattelaer, T. Plehn, and R. Winterhalder, “The Madnis
Reloaded,” arXiv:2311.01548 [hep-ph].

[35] D. Yallup, T. Janßen, S. Schumann, and W. Handley, “Exploring phase space with Nested
Sampling,” Eur. Phys. J. C 82 (2022) 8, arXiv:2205.02030 [hep-ph].

[36] T. Janßen, D. Mâıtre, S. Schumann, F. Siegert, and H. Truong, “Unweighting multijet event
generation using factorisation-aware neural networks,” SciPost Phys. 15 (2023) 107,
arXiv:2301.13562 [hep-ph].

[37] D. Mâıtre and H. Truong, “One-loop matrix element emulation with factorisation awareness,”
arXiv:2302.04005 [hep-ph].

https://dx.doi.org/10.1016/0550-3213(88)90442-7
https://dx.doi.org/10.1016/0550-3213(88)90442-7
https://dx.doi.org/10.21468/SciPostPhysCodeb.3
https://arxiv.org/abs/2106.06507
https://dx.doi.org/10.22323/1.414.0222
https://dx.doi.org/10.1016/j.cpc.2020.107310
https://dx.doi.org/10.1016/j.cpc.2020.107310
https://arxiv.org/abs/1912.08005
https://arxiv.org/abs/1405.1067
https://dx.doi.org/10.1103/PhysRevD.109.014013
https://arxiv.org/abs/2309.13154
https://www.hdfgroup.org/HDF5/
https://dx.doi.org/10.1016/j.cpc.2015.01.024
https://dx.doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://dx.doi.org/10.21468/SciPostPhysCodeb.8
https://dx.doi.org/10.21468/SciPostPhysCodeb.8
https://arxiv.org/abs/2203.11601
https://dx.doi.org/10.1088/1126-6708/2008/12/039
https://arxiv.org/abs/0808.3674
https://arxiv.org/abs/2406.07671
https://dx.doi.org/10.21468/SciPostPhys.8.4.069
https://arxiv.org/abs/2001.05478
https://dx.doi.org/10.22323/1.382.0056
https://dx.doi.org/10.1103/PhysRevD.101.076002
https://arxiv.org/abs/2001.10028
https://dx.doi.org/10.21468/SciPostPhys.15.4.141
https://dx.doi.org/10.21468/SciPostPhys.15.4.141
https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2311.01548
https://dx.doi.org/10.1140/epjc/s10052-022-10632-2
https://arxiv.org/abs/2205.02030
https://dx.doi.org/10.21468/SciPostPhys.15.3.107
https://arxiv.org/abs/2301.13562
https://arxiv.org/abs/2302.04005

	Introduction
	Methods
	Results
	Discussion
	Acknowledgements

