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Abstract. In this proceedings, we present two new quantum circuit simulation protocols
recently added as optional backends to Qibo, an open-source framework for quantum simula-
tion, hardware control and calibration. We describe the current status of the framework as for
version 0.2.9. In detail, the two new backends for Clifford and tensor networks simulation
are presented and benchmarked against the state-of-the-art.

1 Introduction
With the significant achievements reached by quantum technologies [1–3], the interest towards quan-

tum computing is consistently growing. However, the noise affecting these early devices is preventing
large-scale applications of quantum algorithms. Waiting for quantum computers to reach a level of re-
liability that allows for full-scale execution of quantum computing routines without limitations on the
problem size, it is necessary to continuously improve the simulation tools we have at our disposal. In
particular, the development of classical simulation techniques is crucial to overcome the intrinsic repre-
sentation limit in full statevector simulation, where the memory required to fully represent a qubit system
explodes exponentially as the number of qubits increases.

Several open-source software packages for classical simulation of quantum systems are available. While
some of them, including Qiskit [4] and Cirq [5], cuQuantum [6], tket [7] and Yao [8], provide general
tools for quantum simulations, other libraries such as Pennylane [9] mostly focus on specific applications
like quantum machine learning.

In this context, for the last 4 years we have been developing Qibo [10], an open-source software frame-
work for quantum computing. At its early stages, Qibo was mainly dedicated to full statevector (including
density matrix) simulation [11], and managed to achieve performance competitive with state-of-the-art
simulators, thanks, also, to a Just-In-Time compilation approach [12]. The current layout of the Qibo
framework, as of version 0.2.9, is shown in Fig. 1. Qibo provides a language Application Programming
Interface (API) to deploy quantum algorithms using either a circuit-based or a quantum annealing-based
approach. Moreover, we provide general-purpose tools that are useful in quantum information theory,
including calculation of distances among quantum states and quantum channels. Qibo’s modular struc-
ture enables the deployment of any component of the language API on different software and hardware
platforms, which we refer to as backends. We are now going to briefly present all the backends avail-
able in version 0.2.9. The Qibo package [13] upon installation is equipped with a backend based on
Numpy [14], which provides adequate performances for simulating circuits with a relatively low number
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Figure 1: Qibo framework in version 0.2.9 [13].

of qubits n (i.e. n ≤ 20). We also provide a more efficient general purpose simulator, called Qibojit,
which supports hardware acceleration. More specifically, Qibojit allows multi-threaded CPU execution
using Numba [15], while GPU support is enabled both through Cupy [16] and through compatibility with
NVIDIA’s CuQuantum [6] library. To improve the performance, Qibojit defines custom operators that
exploit the sparsity of the matrix representation of several quantum gates that are often used in quantum
computing. Such improvements are also reflected in the quantum annealing approach when the Trotter
decomposition is used. We also provide backends supporting automatic differentiation specifically de-
signed for quantum machine learning applications, including one based on TensorFlow [17] primitives,
and a recently added one based on the popular machine learning framework Pytorch [18]. The possibil-
ity of integrating automatic differentiation tools within such a modular environment can be exploited to
develop and test both pure quantum and hybrid classical-quantum machine learning algorithms [19–25].

As a middleware software package, Qibo also provides a backend for quantum hardware execution.
This backend is called Qibolab, which defines a dedicated API to perform instrument control, driver
operations, as well as compilation of Qibo circuits into customizable native gates sets. Alongside Qibolab,
we provide a dedicated package to characterize and calibrate self-hosted quantum devices: Qibocal [26].
Besides simulation and hardware backends, there is an ongoing effort to provide cloud access, giving users
the possibility to manage their self-hosted quantum hardware by using Qibolab’s hardware control tools,
or to deploy quantum circuits on well-known quantum cloud providers, including IBM Quantum [4] and
IonQ [27].

This was a brief overview to showcase the wide modularity and diversity that Qibo provides. As a
demonstration of the ongoing effort to continuously support new platforms and extend Qibo’s compatibil-
ity with state-of-the-art quantum computing software stacks we recently added a backend that interfaces
Qibo with Qulacs [28].

Below, we focus on two simulation backends recently added to the Qibo framework, which are dedi-
cated to tensor network simulation of quantum circuits and fast simulation of Clifford circuits.
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Figure 2: Benchmarks showing the performances of the Clifford simulator and Qibotn.

2 Simulation of Clifford circuits
With full statevector simulation, it is only possible to simulate circuits up to a limited number of

qubits: John Preskill describes this limitation in Ref. [29] introducing the approximate yet explanatory
term of 50-qubit barrier. The main limitations are imposed by huge memory requirements and very long
computation times [30]. Over the last decades, researchers have studied extensively Clifford circuits, a
class of circuits that can be simulated in polynomial times [31]. The quantum states generated by Clifford
circuits are called stabilizers states [32], and have many applications in quantum information theory [33–
37]. As current quantum hardware gets closer to the requirements needed for quantum error correction[3],
such circuits have started to receive more attention, leading to the development of techniques to classically
simulate them.

Based on this, a new backend has been developed in Qibo which focuses on fast and efficient simulation
of Clifford circuits. The implementation in Qibo is based on the phase-space formalism introduced in
Ref. [31]. From the perspective of code design, the implementation makes full use of Qibo’s modularity,
allowing for alternative backends to be easily plugged in. The basic implementation proposed is based
on Numpy primitives. This enables the single-threaded simulation of Clifford circuits on CPUs. By taking
advantage of Qibojit, we also provide implementations based on Numba and Cupy. The integration
with the Numba backend for multi-threaded computations on CPUs is done via custom kernels that are
compiled just-in-time. For GPU integration, we make use of custom CUDA C kernels through Cupy.

To evaluate our implementation, we compare our Clifford simulator with Clifford simulators available
in Qiskit and Cirq. The results are shown in Fig. 2a. We tested all the simulators on the same dataset
consisting of 100 random Clifford circuits for each system syze n. These circuits were sampled uniformly
following Ref. [38]. We ran the CPU benchmarks on an AMD EPYC 7773X processor and the GPU
benchmarks on a NVIDIA RTX Quadro a6000. Our Numpy and Cupy backends asymptotically approach
performance similar to Qiskit, whereas our Numba-based implementation displays an advantage over the
whole range of qubits considered. For instance, for n = 1000, our Numba backend is up to one order of
magnitude faster than Qiskit, and almost two order of magnitudes faster than Cirq.

Here, we make a remark about our GPU implementation. As expected, the overhead of copying the
data from the host to the device is dominating the results for a small number of qubits. However, an
improvement due to the huge parallelization capabilities of GPUs is expected to appear at n ≳ 211. Since
we benchmarked average runtimes up to 1000 qubits, this “crossing” in performance was not observed
yet, making further investigation of bigger systems a necessity.

3 TensorNetwork simulation using Qibo
After showing that for specific type of quantum circuits we can reduce the computational time, we

now introduce a second popular approach to simulate large quantum circuits: classical approximation



methods. A popular method for approximating quantum circuits are tensor networks (TN) [39], which
represents states or operators as network of smaller tensors reducing both memory and computational
requirements. They are successfully used, for instance, to solve one-dimensional strongly-correlated quan-
tum systems [40]. On the other hand, the effectiveness of representing large-scale systems comes at the
cost of introducing truncation errors, which make these techniques less effective when there is the need
to know the quantum state more exhaustively.

Within the Qibo framework, we have recently developed Qibotn, a Qibo subpackage which enables to
execute quantum circuits using tensor network like computations, allowing to support large-scale simu-
lation of quantum circuits in Qibo. Qibotn interfaces Qibo with state-of-the-art quantum TN simulation
libraries such as CuTensorNet [6] from NVIDIA and quimb [41]. Both Matrix Product States and generic
TN are supported. Qibotn is designed to support High Performance Computing configurations including
single node GPUs, as well as multi-node multi-GPU configuration using Message Passing Interface or the
NVIDIA Collective Communication Library (NCCL) from NVIDIA.

To showcase the capabilities of the library we perform comparison between Qibojit and Qibotn
performances in Fig.2b. We execute a variational quantum circuit on a NVIDIA A100 GPU for several
number of qubits. As expected, using full statevector simulation with Qibojit it possible to run only up
to 40, while using Qibotn we show how the curve flattens and we observe that we are able to simulate a
variational circuit with up to 400 qubits. Moreover, given the slow rise of the curve we expect to increase
the number of qubits with appropriate memory requirements.

4 Outlook
In this proceedings, we have described the latest updates available in Qibo 0.2.9. After a brief

overview on all modules currently available in the Qibo framework, we have put the focus on two new
simulation methodologies: Clifford simulation and Tensor Networks (TN). We have shown that our
Clifford simulator is competitive with state-of-the-art libraries. We further demonstrated that, despite
its early development stage, our TN implementation is able to simulate efficiently circuits with up to
400 qubits. Future developments of the Qibo framework include having a dedicated module to perform
QML algorithms, which we refer to as Qiboml, and we are looking forward to expand Qibo to support
also quantum chemistry, as well as Quantum optimization problems. Finally, although Qibo has been
developed in Python, we are looking to separate Qibo core elements to take advantage of the better
performance offered by other languages, e.g. C++ and Rust.
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