
TIF-UNIMI-2024-7

Beyond full-state vector simulation with Qibo

Andrea Pasquale1,2, Andrea Papaluca3, Renato M. S.
Farias1,4, Matteo Robbiati2,5, Edoardo Pedicillo1,2, and
Stefano Carrazza1,2,5

1Quantum Research Center, Technology Innovation Institute, Abu Dhabi, UAE
2TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano
3School of Computing, Australian National University, Canberra, ACT, Australia
5European Organization for Nuclear Research (CERN), Geneva 1211, Switzerland
4Instituto de F́ısica, Universidade Federal do Rio de Janeiro, P.O. Box 68528, Rio de
Janeiro, Rio de Janeiro 21941-972, Brazil

E-mail: andrea.pasquale@unimi.it

Abstract. In this proceedings, we present two new quantum circuit simulation protocols
recently added as optional backends to Qibo, an open-source framework for quantum simula-
tion, hardware control and calibration. We describe the current status of the framework as for
version 0.2.9. In detail, the two new backends for Clifford and tensor networks simulation
are presented and benchmarked against the state-of-the-art.

1 Introduction
With the significant achievements reached by quantum technologies [1–3], the interest towards quan-

tum computing is consistently growing. However, the noise affecting these early devices is preventing
large-scale applications of quantum algorithms. Waiting for quantum computers to reach a level of re-
liability that allows for full-scale execution of quantum computing routines without limitations on the
problem size, it is necessary to continuously improve the simulation tools we have at our disposal. In
particular, the development of classical simulation techniques is crucial to overcome the intrinsic repre-
sentation limit in full statevector simulation, where the memory required to fully represent a qubit system
explodes exponentially as the number of qubits increases.

Several open-source software packages for classical simulation of quantum systems are available. While
some of them, including Qiskit [4] and Cirq [5], cuQuantum [6], tket [7] and Yao [8], provide general
tools for quantum simulations, other libraries such as Pennylane [9] mostly focus on specific applications
like quantum machine learning.

In this context, for the last 4 years we have been developing Qibo [10], an open-source software frame-
work for quantum computing. At its early stages, Qibo was mainly dedicated to full statevector (including
density matrix) simulation [11], and managed to achieve performance competitive with state-of-the-art
simulators, thanks, also, to a Just-In-Time compilation approach [12]. The current layout of the Qibo
framework, as of version 0.2.9, is shown in Fig. 1. Qibo provides a language Application Programming
Interface (API) to deploy quantum algorithms using either a circuit-based or a quantum annealing-based
approach. Moreover, we provide general-purpose tools that are useful in quantum information theory,
including calculation of distances among quantum states and quantum channels. Qibo’s modular struc-
ture enables the deployment of any component of the language API on different software and hardware
platforms, which we refer to as backends. We are now going to briefly present all the backends avail-
able in version 0.2.9. The Qibo package [13] upon installation is equipped with a backend based on
Numpy [14], which provides adequate performances for simulating circuits with a relatively low number

Qibo
Implementation

Language API

Quantum annealing

Quantum computing

Quantum information

Simulation
backends

Qibojit Efficient thanks to
custom operators

Numpy
Lightweight, fits
any CPU

Clifford
Specialized in
Clifford circuits

Qulacs Interface

TensorFlow

Pytorch

Qibotn TensorNetwork
simulator

Hybrid QML with
automatic
differentiation

Cloud
backends

IBM

QRC-TII

Hardware
backend

Qibolab

Control drivers

Convert gates to pulses

Compiler

Applications

Qiboml

Qibochem

Qibosoq

Qibocal

Characterization

Validation

Verification

 RFSoCs

Figure 1: Qibo framework in version 0.2.9 [13].

of qubits n (i.e. n ≤ 20). We also provide a more efficient general purpose simulator, called Qibojit,
which supports hardware acceleration. More specifically, Qibojit allows multi-threaded CPU execution
using Numba [15], while GPU support is enabled both through Cupy [16] and through compatibility with
NVIDIA’s CuQuantum [6] library. To improve the performance, Qibojit defines custom operators that
exploit the sparsity of the matrix representation of several quantum gates that are often used in quantum
computing. Such improvements are also reflected in the quantum annealing approach when the Trotter
decomposition is used. We also provide backends supporting automatic differentiation specifically de-
signed for quantum machine learning applications, including one based on TensorFlow [17] primitives,
and a recently added one based on the popular machine learning framework Pytorch [18]. The possibil-
ity of integrating automatic differentiation tools within such a modular environment can be exploited to
develop and test both pure quantum and hybrid classical-quantum machine learning algorithms [19–25].

As a middleware software package, Qibo also provides a backend for quantum hardware execution.
This backend is called Qibolab, which defines a dedicated API to perform instrument control, driver
operations, as well as compilation of Qibo circuits into customizable native gates sets. Alongside Qibolab,
we provide a dedicated package to characterize and calibrate self-hosted quantum devices: Qibocal [26].
Besides simulation and hardware backends, there is an ongoing effort to provide cloud access, giving users
the possibility to manage their self-hosted quantum hardware by using Qibolab’s hardware control tools,
or to deploy quantum circuits on well-known quantum cloud providers, including IBM Quantum [4] and
IonQ [27].

This was a brief overview to showcase the wide modularity and diversity that Qibo provides. As a
demonstration of the ongoing effort to continuously support new platforms and extend Qibo’s compatibil-
ity with state-of-the-art quantum computing software stacks we recently added a backend that interfaces
Qibo with Qulacs [28].

Below, we focus on two simulation backends recently added to the Qibo framework, which are dedi-
cated to tensor network simulation of quantum circuits and fast simulation of Clifford circuits.

100 101 102 103

n qubits

10−4

10−3

10−2

10−1

100

101

102

A
ve

ra
ge

ru
nt

im
e

(s
)

Clifford Simulator

Qibo - NumPy

Qibo - Numba

Qibo - CuPy

Cirq

Qiskit-Aer

(a) Simulation of Clifford circuits with an increasing num-
ber of qubits. For each point we take the average over 100
different randomly generated circuits. Circuits were gen-
erated following Ref. [38], which guarantees an uniform
distribution of the generated n-qubit Clifford operators.
We did not include measurements in this benchmark.

101 102

n qubits

10−3

10−2

10−1

100

101

102

A
ve

ra
ge

ru
nt

im
e

(s
)

Qibotn benchmark

Qibo - Numba

Qibo - CuTensorNet

(b) Total simulation time between Qibojit and Qibotn

for a variational circuit. See [12] for the specific circuit
employed. The execution is performed on a NVIDIA A100
GPU using NVIDIA and on AMD EPYC 7713.

Figure 2: Benchmarks showing the performances of the Clifford simulator and Qibotn.

2 Simulation of Clifford circuits
With full statevector simulation, it is only possible to simulate circuits up to a limited number of

qubits: John Preskill describes this limitation in Ref. [29] introducing the approximate yet explanatory
term of 50-qubit barrier. The main limitations are imposed by huge memory requirements and very long
computation times [30]. Over the last decades, researchers have studied extensively Clifford circuits, a
class of circuits that can be simulated in polynomial times [31]. The quantum states generated by Clifford
circuits are called stabilizers states [32], and have many applications in quantum information theory [33–
37]. As current quantum hardware gets closer to the requirements needed for quantum error correction[3],
such circuits have started to receive more attention, leading to the development of techniques to classically
simulate them.

Based on this, a new backend has been developed in Qibo which focuses on fast and efficient simulation
of Clifford circuits. The implementation in Qibo is based on the phase-space formalism introduced in
Ref. [31]. From the perspective of code design, the implementation makes full use of Qibo’s modularity,
allowing for alternative backends to be easily plugged in. The basic implementation proposed is based
on Numpy primitives. This enables the single-threaded simulation of Clifford circuits on CPUs. By taking
advantage of Qibojit, we also provide implementations based on Numba and Cupy. The integration
with the Numba backend for multi-threaded computations on CPUs is done via custom kernels that are
compiled just-in-time. For GPU integration, we make use of custom CUDA C kernels through Cupy.

To evaluate our implementation, we compare our Clifford simulator with Clifford simulators available
in Qiskit and Cirq. The results are shown in Fig. 2a. We tested all the simulators on the same dataset
consisting of 100 random Clifford circuits for each system syze n. These circuits were sampled uniformly
following Ref. [38]. We ran the CPU benchmarks on an AMD EPYC 7773X processor and the GPU
benchmarks on a NVIDIA RTX Quadro a6000. Our Numpy and Cupy backends asymptotically approach
performance similar to Qiskit, whereas our Numba-based implementation displays an advantage over the
whole range of qubits considered. For instance, for n = 1000, our Numba backend is up to one order of
magnitude faster than Qiskit, and almost two order of magnitudes faster than Cirq.

Here, we make a remark about our GPU implementation. As expected, the overhead of copying the
data from the host to the device is dominating the results for a small number of qubits. However, an
improvement due to the huge parallelization capabilities of GPUs is expected to appear at n ≳ 211. Since
we benchmarked average runtimes up to 1000 qubits, this “crossing” in performance was not observed
yet, making further investigation of bigger systems a necessity.

3 TensorNetwork simulation using Qibo
After showing that for specific type of quantum circuits we can reduce the computational time, we

now introduce a second popular approach to simulate large quantum circuits: classical approximation

methods. A popular method for approximating quantum circuits are tensor networks (TN) [39], which
represents states or operators as network of smaller tensors reducing both memory and computational
requirements. They are successfully used, for instance, to solve one-dimensional strongly-correlated quan-
tum systems [40]. On the other hand, the effectiveness of representing large-scale systems comes at the
cost of introducing truncation errors, which make these techniques less effective when there is the need
to know the quantum state more exhaustively.

Within the Qibo framework, we have recently developed Qibotn, a Qibo subpackage which enables to
execute quantum circuits using tensor network like computations, allowing to support large-scale simu-
lation of quantum circuits in Qibo. Qibotn interfaces Qibo with state-of-the-art quantum TN simulation
libraries such as CuTensorNet [6] from NVIDIA and quimb [41]. Both Matrix Product States and generic
TN are supported. Qibotn is designed to support High Performance Computing configurations including
single node GPUs, as well as multi-node multi-GPU configuration using Message Passing Interface or the
NVIDIA Collective Communication Library (NCCL) from NVIDIA.

To showcase the capabilities of the library we perform comparison between Qibojit and Qibotn
performances in Fig.2b. We execute a variational quantum circuit on a NVIDIA A100 GPU for several
number of qubits. As expected, using full statevector simulation with Qibojit it possible to run only up
to 40, while using Qibotn we show how the curve flattens and we observe that we are able to simulate a
variational circuit with up to 400 qubits. Moreover, given the slow rise of the curve we expect to increase
the number of qubits with appropriate memory requirements.

4 Outlook
In this proceedings, we have described the latest updates available in Qibo 0.2.9. After a brief

overview on all modules currently available in the Qibo framework, we have put the focus on two new
simulation methodologies: Clifford simulation and Tensor Networks (TN). We have shown that our
Clifford simulator is competitive with state-of-the-art libraries. We further demonstrated that, despite
its early development stage, our TN implementation is able to simulate efficiently circuits with up to
400 qubits. Future developments of the Qibo framework include having a dedicated module to perform
QML algorithms, which we refer to as Qiboml, and we are looking forward to expand Qibo to support
also quantum chemistry, as well as Quantum optimization problems. Finally, although Qibo has been
developed in Python, we are looking to separate Qibo core elements to take advantage of the better
performance offered by other languages, e.g. C++ and Rust.

5 Acknowledgements
This project is supported by TII’s Quantum Research Center. The authors thank all Qibo contributors

for helpful discussion and Liwei Yang and Andy Tan Kai Yong for their support in developing Qibotn.
M.R. is supported by CERN’s Quantum Technology Initiative (QTI) through the Doctoral Student Program.

References
[1] Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Wei, Ewout Berg, Sami Rosenblatt, Hasan

Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, and Abhinav Kandala. Evidence for the utility
of quantum computing before fault tolerance. Nature, 618:500–505, 06 2023. doi: 10.1038/s41586-
023-06096-3.

[2] Frank Arute et al. Quantum supremacy using a programmable superconduct-
ing processor. Nature, 574:505–510, 2019. doi: 10.1038/s41586-019-1666-5. URL
https://doi.org/10.1038/s41586-019-1666-5.

[3] Sebastian Krinner et al. Realizing repeated quantum error correction in a distance-three surface
code. Nature, 605(7911):669–674, May 2022. ISSN 1476-4687. doi: 10.1038/s41586-022-04566-8.
URL http://dx.doi.org/10.1038/s41586-022-04566-8.

[4] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien
Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and
Jay M. Gambetta. Quantum computing with Qiskit, 2024.

[5] Cirq Developers. Cirq, May 2024. URL https://doi.org/10.5281/zenodo.11398048.

[6] The cuQuantum development team. Nvidia cuquantum sdk, 2023.
URL https://github.com/nvidia/cuquantum. BSD-3-Clause License,
https://github.com/NVIDIA/cuQuantum/blob/main/LICENSE.

[7] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross
Duncan. t—ket〉: a retargetable compiler for nisq devices. Quantum Science and Technol-
ogy, 6(1):014003, November 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/ab8e92. URL
http://dx.doi.org/10.1088/2058-9565/ab8e92.

[8] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Yao. jl: Extensible, efficient framework for
quantum algorithm design. Quantum, 4:341, 2020.

[9] Ville Bergholm et al. Pennylane: Automatic differentiation of hybrid quantum-classical computa-
tions, 2022. URL https://arxiv.org/abs/1811.04968.

[10] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego
Garćıa-Mart́ın, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza. Qibo: a frame-
work for quantum simulation with hardware acceleration. Quantum Science and Technol-
ogy, 7(1):015018, December 2021. ISSN 2058-9565. doi: 10.1088/2058-9565/ac39f5. URL
http://dx.doi.org/10.1088/2058-9565/ac39f5.

[11] S. Carrazza, S. Efthymiou, M. Lazzarin, and A. Pasquale. An open-source modu-
lar framework for quantum computing. Journal of Physics: Conference Series, 2438(1):
012148, February 2023. ISSN 1742-6596. doi: 10.1088/1742-6596/2438/1/012148. URL
http://dx.doi.org/10.1088/1742-6596/2438/1/012148.

[12] Stavros Efthymiou, Marco Lazzarin, Andrea Pasquale, and Stefano Carrazza. Quantum simulation
with just-in-time compilation. Quantum, 6:814, September 2022. ISSN 2521-327X. doi: 10.22331/q-
2022-09-22-814. URL http://dx.doi.org/10.22331/q-2022-09-22-814.

[13] Stavros Efthymiou, Renato M. S. Farias, Stefano Carrazza, Andrea Papaluca, Matteo Rob-
biati, Edoardo Pedicillo, Andrea Pasquale, Simone Bordoni, Alejandro Sopena, Sam-XiaoyueLi,
shangtai, Carlos Bravo-Prieto, Alessandro Candido, AdrianPerezSalinas, Yelyzaveta Vodovo-
zova, Sergi Ramos-Calderer, Wen Jun, Diego Garćıa-Mart́ın, Marco Lazzarin, Jun Yong Khoo,
Jorge J. Mart́ınez de Lejarza, Andrew Wright, Jian Feng Kong, Nicole Zattarin, Ema Pul-
jak, Luca Zilli, Paul, Marek Gluza, and rahul. qiboteam/qibo: Qibo 0.2.9, June 2024. URL
https://doi.org/10.5281/zenodo.12577885.

[14] Charles R. Harris et al. Array programming with NumPy. Nature, 585(7825):357–362, September
2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.

[15] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: A llvm-based python jit compiler.
In Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages 1–6,
2015.

[16] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. CuPy : A numpy-
compatible library for nvidia gpu calculations. In Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. URL http://learningsys.org/nips17/assets/papers/paper 16.pdf.

[17] Mart́ın Abadi et al. TensorFlow : Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.org.

[18] Adam Paszke et al. PyTorch: An imperative style, high-performance deep learning library, 2019.
URL https://arxiv.org/abs/1912.01703.

[19] Carlos Bravo-Prieto, Julien Baglio, Marco Cè, Anthony Francis, Dorota M. Grabowska, and
Stefano Carrazza. Style-based quantum generative adversarial networks for monte carlo events.
Quantum, 6:777, August 2022. ISSN 2521-327X. doi: 10.22331/q-2022-08-17-777. URL
http://dx.doi.org/10.22331/q-2022-08-17-777.

[20] Adrián Pérez-Salinas, Juan Cruz-Martinez, Abdulla A. Alhajri, and Stefano Carrazza.
Determining the proton content with a quantum computer. Physical Review D, 103
(3), February 2021. ISSN 2470-0029. doi: 10.1103/physrevd.103.034027. URL
http://dx.doi.org/10.1103/PhysRevD.103.034027.

[21] Matteo Robbiati, Juan M. Cruz-Martinez, and Stefano Carrazza. Determining probability density
functions with adiabatic quantum computing, 2023. URL https://arxiv.org/abs/2303.11346.

[22] Matteo Robbiati, Stavros Efthymiou, Andrea Pasquale, and Stefano Carrazza. A quan-
tum analytical adam descent through parameter shift rule using qibo, 2022. URL
https://arxiv.org/abs/2210.10787.

[23] Matteo Robbiati, Alejandro Sopena, Andrea Papaluca, and Stefano Carrazza. Real-
time error mitigation for variational optimization on quantum hardware, 2023. URL
https://arxiv.org/abs/2311.05680.

[24] Juan M Cruz-Martinez, Matteo Robbiati, and Stefano Carrazza. Multi-variable integration with a
variational quantum circuit. Quantum Science and Technology, 9(3):035053, June 2024. ISSN 2058-
9565. doi: 10.1088/2058-9565/ad5866. URL http://dx.doi.org/10.1088/2058-9565/ad5866.

[25] Simone Bordoni, Denis Stanev, Tommaso Santantonio, and Stefano Giagu. Long-lived particles
anomaly detection with parametrized quantum circuits. Particles, 6(1):297–311, 2023. ISSN 2571-
712X. doi: 10.3390/particles6010016. URL https://www.mdpi.com/2571-712X/6/1/16.

[26] Andrea Pasquale, Stavros Efthymiou, Sergi Ramos-Calderer, Jadwiga Wilkens, Ingo Roth, and Ste-
fano Carrazza. Towards an open-source framework to perform quantum calibration and characteri-
zation, 2024. URL https://arxiv.org/abs/2303.10397.

[27] IonQ Inc. IonQ Quantum Cloud, 2024. URL https://ionq.com/quantum-cloud.

[28] Yasunari Suzuki, Yoshiaki Kawase, Yuya Masumura, Yuria Hiraga, Masahiro Nakadai, Jiabao Chen,
Ken M. Nakanishi, Kosuke Mitarai, Ryosuke Imai, Shiro Tamiya, Takahiro Yamamoto, Tennin Yan,
Toru Kawakubo, Yuya O. Nakagawa, Yohei Ibe, Youyuan Zhang, Hirotsugu Yamashita, Hikaru
Yoshimura, Akihiro Hayashi, and Keisuke Fujii. Qulacs: a fast and versatile quantum circuit simu-
lator for research purpose. Quantum, 5:559, October 2021. ISSN 2521-327X. doi: 10.22331/q-2021-
10-06-559. URL http://dx.doi.org/10.22331/q-2021-10-06-559.

[29] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, August 2018. ISSN
2521-327X. doi: 10.22331/q-2018-08-06-79. URL http://dx.doi.org/10.22331/q-2018-08-06-79.

[30] George F. Viamontes, Igor L. Markov, and John P. Hayes. Improving gate-level simulation of
quantum circuits, 2003. URL https://arxiv.org/abs/quant-ph/0309060.

[31] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical
Review A, 70(5), November 2004. ISSN 1094-1622. doi: 10.1103/physreva.70.052328. URL
http://dx.doi.org/10.1103/PhysRevA.70.052328.

[32] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum error correction and
orthogonal geometry. Physical Review Letters, 78(3):405–408, January 1997. ISSN 1079-7114. doi:
10.1103/physrevlett.78.405. URL http://dx.doi.org/10.1103/PhysRevLett.78.405.

[33] Daniel Gottesman. Stabilizer codes and quantum error correction, 1997. URL
https://arxiv.org/abs/quant-ph/9705052.

[34] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review A,
57(1):127–137, January 1998. ISSN 1094-1622. doi: 10.1103/physreva.57.127. URL
http://dx.doi.org/10.1103/PhysRevA.57.127.

[35] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford gates and noisy
ancillas. Physical Review A, 71(2), feb 2005. ISSN 1094-1622. doi: 10.1103/physreva.71.022316. URL
http://dx.doi.org/10.1103/PhysRevA.71.022316.

[36] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Oz-
eri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Phys-
ical Review A, 77(1), jan 2008. ISSN 1094-1622. doi: 10.1103/physreva.77.012307. URL
http://dx.doi.org/10.1103/PhysRevA.77.012307.

[37] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum
system from very few measurements. Nature Physics, 16(10):1050–1057, jun 2020. ISSN 1745-2481.
doi: 10.1038/s41567-020-0932-7. URL http://dx.doi.org/10.1038/s41567-020-0932-7.

[38] Sergey Bravyi and Dmitri Maslov. Hadamard-free circuits expose the structure of the clifford group.
IEEE Transactions on Information Theory, 67(7):4546–4563, July 2021. ISSN 1557-9654. doi:
10.1109/tit.2021.3081415. URL http://dx.doi.org/10.1109/TIT.2021.3081415.

[39] Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell, 2017. URL
https://arxiv.org/abs/1708.00006.

[40] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix product states.
Annals of Physics, 326(1):96–192, January 2011. ISSN 0003-4916. doi: 10.1016/j.aop.2010.09.012.
URL http://dx.doi.org/10.1016/j.aop.2010.09.012.

[41] Johnnie Gray. quimb: a python library for quantum information and many-body calculations.
Journal of Open Source Software, 3(29):819, 2018. doi: 10.21105/joss.00819.

