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Abstract. McMule, a Monte Carlo for MUons and other LEptons, implements many
major QED processes at NNLO (eg. ee → ee, eµ → eµ, ee → µµ, ℓp → ℓp, µ → νν̄e)
including effects from the lepton masses, making it suitable for predictions for low-energy
experiments such as MUonE, CMD-III, PRad, or MUSE.

Recently, McMule gained the ability to generate events at NNLO rather than just pre-defined
differential distributions. To avoid negative event weights, it employs cellular resampling
directly as part of the generation step which further reduces the fraction of negative weights.

1 Introduction
Higher-order QED corrections have become important for a number of measurements. Examples include
luminosity measurements at e+e− colliders, tau physics, and measurements of the proton radius. Another
central use case is the extraction of the hadronic vacuum polarisation contributions to the anomalous
magnetic moment of the muon either in e+e− → hadrons or in eµ → eµ. In the latter case, the MUonE
experiment has an unprecedented precision goal of 10−5. Finally, searches for New Physics in lepton
decays, most notably µ → eγ and µ → eee, require very good modelling of the Standard Model (SM)
background.

In these proceedings, we will review McMule [1], a Monte Carlo for MUons and other LEptons.
We have implemented all leptonic 2 → 2 processes in QED at next-to-next-to-leading order (NNLO) as
well as a few others; a full list is shown in Table 1. Once provided with the required matrix elements,
the McMule framework can calculate a physical cross section for an arbitrary physical, i.e. IR finite,
observable. In doing so, it takes care of the phase space generation, subtraction [2], stabilisation [3], and
integration.

The current stable version of McMule v0.5.0 is an integrator which means it can calculate arbitrary
distributions but not generate events. An event generator is currently still in testing as we will discuss
below. The code can be obtained from

https://mule-tools.gitlab.io

and the manual, which includes a getting started section, can be found at

https://mcmule.readthedocs.io

The code is written in Fortran 95, compiled with meson+ninja, and supported by tooling in python
3.9. The user specifies their observable in a routine that is compiled separately and loaded at runtime,
allowing them to use whatever language and framework they prefer.

https://mule-tools.gitlab.io
https://mcmule.readthedocs.io


process experiment physics motivation order reference
eµ → eµ MUonE HVP to (g − 2)µ NNLO+ [1, 4]
ℓp → ℓp P2, Muse, Prad, QWeak, ... proton radius, weak charge NNLO [1, 5]
e−e− → e−e− Prad 2 normalisation NNLO [6]

MOLLER, ... sin2 θW at low Q2

e+e− → e+e− any e+e− collider luminosity measurement NNLO [3]
ee → ℓℓ VEPP, BES, Daphne, ... R-ratio NNLO± [7]

Belle τ properties
ee → γγ Daphne dark searches NNLO−

any e+e− collider luminosity measurement
eν → eν DUNE flux & sin2 θW NNLO−
µ → νν̄e MEG ALP searches NNLO+ [8]

DUNE beam-line profiling
µ → νν̄eγ MEG, Mu3e, Pioneer background NLO [9]
µ → νν̄eee Mu3e background NLO [10]
ee → ππ VEPP, BES, Daphne, ... R-ratio NNLO−
ee → ℓℓγ VEPP, BES, Daphne, ... R-ratio NLO+

Table 1: Processes included in McMule, the experiment and physics case for which they are relevant,
and the order at which they are implemented. A + indicates that future improvements are to be expected
for this process, while a − indicates that this process is not known exactly at the given order.

These proceedings are organised as follows: in Section 2, we will very briefly review some of the
theory behind McMule to the extent that is relevant for its implementation. Next, we will discuss how
McMule’s event generation mode will work in Section 3 with some results for µ → νν̄e at NNLO before
concluding in Section 4.

2 Theory behind McMule

To calculate a process in McMule, it needs to know the relevant matrix elements (squared). Using M(ℓ)
n

to denote the ℓ-loop n-particle matrix element, we need at

LO M(0)
n ,

NLO M(1)
n and M(0)

n+1,

NNLO M(2)
n , M(1)

n+1, and M(0)
n+2.

These are represented as function pointers inMcMule and can come from any source. For the real-virtual

M(1)
n+1, we usually rely on OpenLoops [11, 12] supplemented with an automatic stabilisation technique

called next-to-soft (NTS) stabilisation [3] in numerically delicate situations. McMule is further able
to automatically construct the necessary counter terms and perform the numerical integration using the
FKSℓ subtraction scheme.

2.1 The FKSℓ subtraction scheme
The calculation of higher-order corrections includes divergent real corrections. Since McMule utilises
numerical integration, we need to include a prescription to handle these in dimensional regularisation.
Since we always consider fermions massive, the only source of singularities are soft emissions, where we can
use the universal behaviour studied by Yennie, Frautschi, and Suura (YFS) [13]: a real-emission matrix
element with any number of loops can be approximated in the limit of the emitted photon becoming soft
as

M(ℓ)
n+1 = EM(ℓ)

n +O(ξ−1) , (1)

where we have defined the rescaled photon energy ξ = 2Eγ/
√
s. We have further defined the eikonal

factor E

E = −
∑

ij

QiQj
pi · pj

(pi · pγ)(pj · pγ)
, (2)



that considers all pairs of fermions with momenta pi (assumed incoming) and charges Qi. Integrating E
over the phase space of the soft, unresolved photon results in the integrated eikonal Ê , which contains
an explicit 1/ϵ soft singularity. The YFS theorem further states that soft singularities exponentiate such

that all singularities from loop integration can be subtracted by Ê as follows

eÊ
∞∑

ℓ=0

M(ℓ)
n =

∞∑

ℓ=0

M(ℓ)f
n = finite . (3)

We can use (1) and (3) to construct an all-order extension of the FKS subtraction scheme [14, 15] called

FKSℓ [2] that only requires knowledge of E and Ê which allows for very efficient implementation. In
particular, we have

σ(ℓ) =

ℓ∑

j=0

∫
dΦn+j

1

j!

[
j∏

i=1

( 1

ξi

)
c

]
M(ℓ)f

n+j (4)

∫ 1

0

dξ
( 1

ξi

)
c
≡

∫ 1

0

dξ
f(ξ)− f(0)θ(ξc − ξ)

ξ
, (5)

where we have also defined an unphysical parameter 0 < ξc ≤ 1 that can be chosen arbitrarily.

2.2 NTS stabilisation
To improve the numerical stability and performance when a real photon becomes soft, we utilise NTS

stabilisation. The basic idea is to expand the matrix element M(1)
n+1 in the photon energy ξ up to next-

to-leading power (NLP) and use the expanded result rather than the full OpenLoops calculation. While
the leading power (LP) term is just the eikonal of (1), the next term is more complicated. It was first
studied by Low [16], Burnett, and Kroll [17] at tree level as the LBK theorem and later extended first
to one-loop [18] and later to any number of loops [19] and photons [20]. The case relevant for the real
virtual is

M(1)
n+1 = E ×M(1)

n︸ ︷︷ ︸
LP

+DLBK

[
M(1)

n

]
+ S ×M(0)

n
︸ ︷︷ ︸

NLP

+O(ξ0) . (6)

For the exact definitions of the LBK operator DLBK and the soft function S, see for example [19]. The

former is a differential operator that is acting on the one-loop matrix element M(1)
n . This operator can

be very neatly written in terms of shifted kinematics [21, 22] that can be chosen to fulfil on-shellness
and momentum conservation exactly [23]. This is also true for polarised scattering, albeit with some
subtleties [7]. The soft function S is similar to the eikonal E except that it has a sum over three partons
rather than two.

Since all matrix elements are presumed to be known in McMule it is hence possible to implement (6)
by only knowing the momenta and charges of the particles involved without any process-dependent
calculations.

3 Event generation
The techniques and tools described so far are sufficient to calculate any fixed-order differential distribu-
tion. However, to model experiments with a Monte Carlo, we need to be able to generate events as well.
The naive ‘garden hose’ approach of just storing the sampled momenta and weights is suboptimal. Since
we are using a subtraction scheme, many events will end up with negative weight. These are not in and
of themselves a problem but increase the number of samples required to reach a given statistical error. A
naive estimate would suggest that if r×N of N weights are negative, we would need ∝ 1/(1− 2r)2 more
events to reach the same precision. If the events are just quickly histogrammed this is not too big of an
issue. However, if, for example, they are propagated through a costly experimental detector simulation,
the number of events needs to be minimised. In practice, this means we need to cancel the negative
events early as part of the Monte Carlo rather than late in the histogram.

To do this, McMule implements a technique called cellular resampling [24, 25]. This method is based
on two central ideas



• integrated cross section are positive, regardless of the size of the integration domain C

σC =

∫

C
dσ > 0 , (7)

• experiments have finite resolution.

By combining these two facts, we arrive at the resampling algorithm of [24, 25]

1. Generate events.

2. Pick the event with the most negative weight wi < 0 as a seed for a cell C.
3. Find nearby events and add them to C. This nearest neighbour search can be performed efficiently

using vantage-point trees [26, 27].

4. Repeat until either:

• the cell becomes too large and events in it become resolvable. In this case, keep wi negative

• the total weight is positive

∑

i∈C
wi > 0 . (8)

In this case, reweight

wi →
∑

j∈C wj∑
j∈C |wj |

wi (9)

5. Go back to Step 2 until no more events can be resampled.

An animation of this procedure can be found in the supplementary materials to this submission.
If the original number of events was high enough, this algorithm is guaranteed to remove all negative

weights without biasing any physical observable. However, this is often difficult to achieve in practice.
Hence, we extend this algorithm by one more step

6. Generate more events in all cells that still contain a negative weight.

This is possible because we are using cellular resampling as part of the generator rather than as a post-
processor for an already existing set of events.

To make use of the cellular resampling algorithm, we need to define a distance in event space. This
metric must ensure that events that differ only by soft photons are considered close to each other (IR
safety) and ideally also considers events that are similar to be close to each other.

In the case of µ → νν̄e where only the electron is detected, a suitable metric might be

d(e1, e2) =

√∣∣∣2E(1)
e /mµ − 2E

(2)
e /mµ

∣∣∣
2

+
∣∣∣ cos θ(1)e − cos θ

(2)
e

∣∣∣
2

, (10)

though further kinematic information may be added as required. In Figure 1 we show the size of the
corrections for the energy spectrum of the electron at NLO and NNLO both with and without resampling.
The resampling reduces the fraction of negative weights from

r ≈ 2× 10−2 → 2× 10−5 . (11)

Further, the “badness” of the negative weights also gets reduced. To quantify this we compare the worst
weight wmin with the average weight ⟨w⟩

wmin

⟨w⟩ ≈ −105 → −10−3 . (12)

This indicates that cellular resampling successfully handles the problem of negative events, allowing
McMule to generate events that are well-suited for experimental studies.
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Figure 1: The results for the differential K factor δK(i) = (dσ(i)/dx)
/
(dσ(i−1)/dx) for the energy

fraction of the electron x = 2Ee/mµ in µ → eνν̄. McMule ran in the default mode (“ref”), event
generator mode (“no cres”) and cell-resampling mode (“cres”).

4 Conclusion
In these proceedings we have discussed the McMule framework for higher-order QED calculations. We
further introduced the event generation aspect and demonstrated cellular resampling as part of a Monte
Carlo tool. While already well established for NNLO-QED, we plan to extend our code to include more
processes such as eµ → eµγ at NNLO, eN → eN for various nuclei such as carbon or deuterium as well
as ee → ππ. We are also working on the inclusion of electroweak effects for ee → ee, µµ at NNLO.
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