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Abstract. We focus on numerical techniques for expanding 3-loop Feynman integrals with respect to the
dimensional regularization parameter ε, which is related to the space-time dimension as ν = 4 − 2ε, and
describes underlying UV singularities located at the boundaries of the integration domain. As a function
of the squared momentum s, the expansion coefficients exhibit thresholds that generally delineate regions
for their computational techniques. For the problem at hand, a sequence of integrations with a linear
extrapolation as ε → 0 may be performed to determine leading coefficients of the ε-expansion numerically.
For the “baseball” Feynman diagram, we have used extrapolation with respect to an additional parameter
to improve the accuracy of the ε-expansion coefficients in case of singularities internal to the domain.

1. Introduction and Background
Higher order corrections are required for accurate theoretical prediction improvements in the technology
of high energy physics experiments. Feynman loop integrals arise in the calculations of the Feynman
diagrammatic approach, which is commonly used to address higher order corrections. Loop integrals
may suffer from integrand singularities or irregularities at the boundaries and/or in the interior of the
integration domain.

We recently explored methods for higher-order corrections to 2-loop Feynman integrals in the
Euclidean or physical kinematical region [1], using numerical extrapolation and adaptive iterated
integration. Our current goal is to address a 3-loop two-point integral for the “baseball” diagram of
Figure 1 with six internal lines.

A representation of an L-loop Feynman integral with N internal lines is given by (e.g., [2, 3, 4, 5])

F = Γ(N − νL
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or, for L = 3, N = 6 :
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where V = M2 − W/U, M2 =
∑

r m
2
rxr; U and W are polynomials determined by the topology

of the corresponding diagram and physical parameters; ν = 4 − 2ε is the space-time dimension; ϱ is a
regularization parameter and we can set ϱ = 0 unless V vanishes in the domain; CN is the N -dimensional
unit hypercube. We consider the integral without the prefactor Γ(3ε).

We use automatic integration, which is a black-box approach for producing (as outputs) an
approximation Qf to an integral I =

∫
D f(x⃗) dx⃗ and an estimate Ef of the actual error Ef = |Qf −I|,

with the goal of satisfying an accuracy requirement of the form |Qf −I | ≤ Ef ≤ max { ta , tr |I| },
where the integrand function f, d-dimensional region D and (absolute/relative) error tolerances ta and
tr, respectively, are specified as part of the input.

For ultra-violet (UV) singularities at the boundaries of the domain, we make use of lattice rules
for Quasi-Monte Carlo (QMC) integration [6] with a boundary transformation that is capable of
smoothing singularities [7, 8]. Another non-adaptive approach is based on a double-exponential (DE)
formula [9, 10, 11, 12]. Adaptive integration may be useful in fairly low dimensions to treat interior
singularities by intensive region partitioning around hot spots [13, 14, 15]. We give results obtained with
1D iterated adaptive integration by the program DQAGSE from the QUADPACK package [13, 16]. In [1]
we applied adaptive integration with an extrapolation on the parameter ϱ that adjusts the factor in V in
the integrand denominator of Eq. (1). We termed the combined extrapolations in ε and ϱ as a “double
extrapolation.”

Subsequently, Section 2 defines the baseball integral; linear extrapolation and double extrapolation
methods are covered in Section 3; results are given in Section 4 and conclusions in Section 5.

2. Baseball integral

Figure 1: 3-loop baseball
diagram with N = 6 lines

A set of 3-loop diagrams with six internal lines, and their associated integrals
are calculated by the authors after separating the ultra-violet divergence [17].
It is our goal to demonstrate our techniques for numerical integration and
extrapolation using another 3-loop diagram in the massive case. Hereafter,
we assume that all masses of the internal lines equal 1. The derivation is
based on a sector decomposition in 5D parameter space; thus the integrals
are labeled by permutations of the 5-tuple (1, 2, 3, 4, 5). There are 5! = 120
integrals, whereas many of the integrals may coincide through symmetries
and the number of integrals to be computed is reduced. We deal with the
baseball diagram shown in Figure 1. Then after assuming equal masses,
15 integrals remain. In this paper, we will study the I51234 integral of the
baseball diagram, which is the integral that has the most singular UV divergence among the 15, with an
O( 1

ε2
) term, and the rest start at the O(1ε ) or O(1) order.

The integral is given by

I51234 =
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where

f = 1 + w + u+ uw + tu+ tuw + tuvw + tu2vw (8)
f0 = f |t=0,v=0, fa = f |t=0, fb = f |v=0 (9)
q = z(1− z) + wz(1− z) + uz(1− z) + uwz(1− z) + tuz + tuwz + tuvw(1− z)

+tu2vw(1− z) + t2u2vw

q0 = q|t=0,v=0, qa = q|t=0, qb = q|v=0 (10)

G = (1 + t(1 + u(1 + v(1 + w))))− s
q

f
(11)

G0 = G|t=0,v=0, Ga = G|t=0, Gb = G|v=0 (12)
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Note that f0 = fa, q0 = qa and G0 = Ga; thus the integrand of Eq. (5) is zero, and I11 simplifies
to Eq. (7). Here, s equals s = P 2, where P is the external momentum; s is measured in units of m2.

3. Methods
3.1. Integration rules
The double-exponential method (DE) [10, 11, 12] transforms the one-dimensional integral

∫ 1
0 f(x) dx =∫∞

−∞ f (ϕ(t))ϕ′(t) dt using x = ϕ (t) = 1
2(tanh (

π
2 sinh (t)) + 1), with ϕ′(t) = π cosh (t)

4 cosh2(π
2
sinh (t))

.

DE involves a truncation of the infinite range and an iterated application of the trapezoidal rule.
For QMC we apply a lattice rule with ≈ 10M points, for which we previously computed the generators

(see, e.g., [18]) using the component-by-component (CBC) algorithm [19, 20]. For increased accuracy,
we apply md-copy rules Q(m) of a basic rank-1 lattice rule [6] Q with m = 2, which corresponds to
subdividing the [0, 1]-range into m equal parts in each coordinate direction and scaling the basic rule
to each subcube. An error estimate is also given. The regular nature of the rule allows for an efficient
implementation on GPUs.

3.2. Linear extrapolation and double extrapolation methods
Linear extrapolation for an integral I is based on an asymptotic expansion of the form

I(ε) ∼
∑
k≥κ

Ck φk(ε), as ε → 0

where the sequence of φk(ε) is known. For the integrals at hand, κ = −2 and φk(ε) = εk for
I00, κ = −1 for I10, and κ = 0 for I11. The expansion is truncated after 2, 3, . . . , n terms to
form linear systems of increasing size in the Ck variables. This is a generalized form of Richardson
extrapolation [21, 7].

For fixed ε = εℓ, the integrand may have a vanishing denominator in the interior of the domain, say
due to the factor V −3ε in Eq. (2). Then V can be replaced by V − iϱ. Since the structure of an expansion
in the parameter ϱ is unknown, we apply a nonlinear extrapolation with the ϵ-algorithm [22] to a sequence
of I(εℓ, ϱ) as ϱ → 0. The combined ε and ϱ extrapolations constitute a double extrapolation [23, 24, 25].



Table 1: Results for s = 1 and s = 4 with QMC and ε-extrapolation

s = 1 C−2 C−1 C0 C1

I00 0.125 -0.026748351868 0.1229976127 -0.087710974
NI 0.124999999999962 -0.026748351855 0.1229976114 -0.087710933

I10 - -0.10136627702704 -0.5057851162 1.89367438
NI -0.10136627702762 -0.5057851170 1.89367429

I11 - - -0.03011542756 -0.045488315
NI - - -0.03011542740 -0.045488308

sum 0.125 -0.128114628895 -0.4129029311 1.760475099
sum NI 0.124999999999962 -0.128114628883 -0.4129029330 1.760475139

s = 4 C−2 C−1 C0 C1

I00 0.125 0.65342641 4.073701 24.2815
NI 0.1250000000010 0.65342699 4.073760 24.2839

I10 - -0.1013662770270 -4.003001 -21.4910
NI -0.1013662770283 -4.002911 -21.4873

I11 - - -0.030115427558 -0.415010
NI - - -0.030115427509 -0.415361

sum 0.125 0.55206013 0.040585 2.375546
sum NI 0.1250000000010 0.55206071 0.040733 2.381239

As a simple example, it can be seen that the integrand of I00 in Eq. (4) is singular within the domain
C3 when s ≥ 4. Following Eqs. (8)-(12), we have that

f0 = 1 + w + u+ uw > 0

q0 = z(1− z)(1 + w + u+ uw) = z(1− z)f0

G0 = 1− s
q0
f0

= 1− sz(1− z) = sz2 − sz + 1

Thus, G0 = sz2 − sz + 1 = 0 has real solutions when the discriminant D = s2 − 4s = s(s − 4) ≥ 0,

and z = (s±
√
s2 − 4s)/(2s) = 1

2 ± 1
2

√
s−4
s = 1

2(1±
√

s−4
s ).

Nevertheless, in view of the weak nature of the singularity, it is possible to obtain solutions for s ≥ 4
using single extrapolations. However, in Section 4, we illustrate a case where double extrapolation
achieves more accuracy than single extrapolation with regard to ε.

4. Numerical results

Results for s = 1 and s = 4 are summarized in Table 1, showing leading coefficients of the Laurent
series expansion of the integrals I00, I!0 and I11. The integration uses a lattice rule with 10M points,
with two copies in each coordinate direction, and the Sidi Ψ6 transformation [8]. The expansion with
respect to ε is performed with a linear (single) extrapolation. “NI” refers to our “Numerical Integration.”

The “exact” values listed for comparison were obtained analytically and with the Mathematica
functions Integrate and NIntegrate. Analytic exact values are given for C−2, C−1 and C0,
and numerical values for C1. The C−2 term appears only in I00 and is s-independent. Similarly, C−1 of
I10 is s-independent. When the Mathematica Integrate function fails at the evaluation of C0 and C1

for I10 and I11 for s = 1 and 4, NIntegrate is used. The lattice rule integrations were carried out on
an Nvidia Quadro GV100 GPU, each taking time of a fraction of a second for about 20 integrations per
problem, although less were used.

Sample results using double extrapolations are further given in Table 2 for I00 with s = 4.5, 5, 7
and 10. The ϱ values for the extrapolation follow a geometric sequence ϱj = 2−j for j = 1, 2, . . . , 11,
whereas the ε values form a Bulirsch type sequence [26], εℓ = 1/4, 1/6, 1/8, 1/12, 1/16, 1/24, . . . .



Table 2: Above threshold results with iterated adaptive integration and double extrapolation for I00

s C−2 C−1 C0 C1 #ε-ext.
T[s]

4.5 0.1249999983 0.56678339 0.4463330 -6.00525 8
±8.8e-9 ±1.3e-6 ±8.0e-5 ±2.5e-3 33

5 0.1249999999989 0.4920230573484 -0.74245949112 -7.754615366 10
±7.9e-14 ±2.5e-11 ±3.1e-9 ±2.1e-7 46

7 0.124999999999963 0.2687848328350 -2.744283992 -4.54297095 12
±7.4e-14 ±4.7e-11 ±1.2e-8 ±1.7e-6 61

10 0.12500000000016 0.054052104327 -3.6553766977 1.92828020 12
±3.5e-13 ±2.2e-10 ±5.8e-8 ±8.1e-6 66

The ε results listed in Table 2 are incurred when the estimated error (based on successive differences)
no longer decreases. ε-ext denotes the number of ε extrapolations to obtain the result for this value
of s. T[s] denotes the corresponding time (for integration) incurred through this number of ε-ext (not
including the iteration where the accuracy stops improving). The integration time dominates the overall
time. The larger values of s require more extrapolations for convergence, hence utilize more time. These
computations were performed (sequentially) on an x86 64 machine under GNU/ Linux. The method is
also effective for I10 (4D), but needs parallelization for I11 (5D).

As part of our discussion, let’s compare the performance of single and double extrapolations for the
same problem. To conclude initially, we observed that double extrapolation may be justified to achieve
better accuracy. This is illustrated for I00 with s = 7. The integrations are done by iterated adaptive
integration using the routine DQAGSE from QUADPACK [13, 16] with a maximum of 50 subdivisions
in each coordinate direction, relative error tolerance 10−9 in the outer coordinate and 5 × 10−10 in
subsequent directions.

A double extrapolation with ε = 1/1.15ℓ, ϱ = 1/1.2k, 25 ≤ ℓ ≤ 30, 10 ≤ k ≤ 20 yields for
C−2, C−1, C0 and C1 at the 5th linear system: 0.1250000066±7.5e-08, 0.2687828385±1.7e-05,
-2.7440527816±1.5e-03, -4.5561503884. The time for all six ε-cycles is 18.1 seconds. For the same
problem, a single extrapolation with ε = 1/1.15ℓ, ℓ ≥ 25, ϱ = 0 gives as the best result observed (at
system 4): 0.1249996422±4.7e-06, 0.2688439263±7.8e-04, -2.7476802260±4.8e-02, -4.4743466989.
In order to compare the time with the double extrapolation, the result for C−2, C−1, C0, C1 at system
5 is: 0.1250017027±2.1e-06, 0.2683866114±4.6e-04, -2.7074720045±1.5e-02, -6.2248242790, with a
total time (for integrations 1 to 6) of 4.9 seconds.
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Figure 2: Real and imaginary part of integral I51234 as a function of s with DE integrattoin



Finally, graphs are displayed in Figure 2 for the real and imaginary part of the total integral I51234
of Eq. (2), where the data were obtained using DE integration and single extrapolation with regard to ρ
after an expansion in ε [17].

5. Conclusions
Whereas symbolic or symbolic/numerical calculations are performed for some challenging problems
using existing software packages, we focus on the development of fully numerical methods for the
evaluation of Feynman loop integrals. The integration strategies adhere to black-box approaches
for generating an approximation, assuming little or no knowledge of the problem, apart from the
specification of the integrand function. We demonstrated efficient strategies based on lattice rules
evaluated on GPUs and double-exponential integration, as well as iterated adaptive integration.
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[3] Cvitanović P and Kinoshita T 1974 Phys. Rev. D10 3978
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