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Abstract. Inspired by over 25 years of experience with the ROOT TTree I/O subsystem
and motivated by modern hardware and software developments as well as an expected
tenfold data volume increase with the HL-LHC, RNTuple is currently being developed as
ROOT’s new I/O subsystem. Its first production release is foreseen for late 2024, and
various experiments have begun working on the integration of RNTuple with their existing
software frameworks and data models. To aid developers in this integration process, and to
help them further understand and monitor the storage patterns of their data with RNTuple,
we have developed the RNTupleInspector utility interface, which will be available with
every ROOT installation that includes RNTuple. The RNTupleInspector provides storage
information for full RNTuples as well as specific fields or columns, and is designed in such a
way that it can be used as part of a larger monitoring tool as well as in an exploratory
setting, for example through the ROOT C++ interpreter. In this contribution, we will
discuss the motivation and design considerations behind the RNTupleInspector and
demonstrate various use cases through examples.

1 Introduction
In anticipation of a tenfold data volume increase during the High-Luminosity LHC (HL-LHC) [1],
RNTuple, ROOT’s next-generation columnar data format and I/O subsystem [2], is currently in the
final design and development phase before its first production release. As a consequence, experiments
have started working on the integration of RNTuple into their core data production frameworks. At the
time of writing, all official ATLAS experiment data products can be written and read in the RNTuple
format through their data production framework, Athena [3]. A similar effort with CMS is currently
ongoing.

Successful adoption of RNTuple, both into an experiment framework and on the end-users side,
requires a solid understanding of its behaviour. Here, behaviour can be subdivided into two categories:
runtime behaviour and static behaviour.
Runtime behaviour concerns the performance of RNTuple during the lifetime of a particular application
execution. Relevant metrics include overall runtime, I/O performance and memory footprint. Obtaining
representative results for this type of behaviour typically requires tailored, experiment-specific



benchmarks. However, some general performance metrics can be obtained from RNTuple through the
EnableMetrics method, callable from both the RNTupleWriter and the RNTupleReader.
In contrast to runtime behaviour, static behaviour pertains to the on-disk storage of an RNTuple, and
the impact of different parameters which can be specified during writing. Relevant metrics include
on-disk size on various levels (total, per-field, per-column, per-cluster, per-page) and the compression
factor (again, on the aforementioned levels). Obtaining these metrics in principle require less
experiment-specific benchmarks, except for some potential specific measurements dictated by the
experiment’s event data model (EDM), which defines the structure of the data.
To help collect static behaviour measurements, we have developed the RNTupleInspector. It is a
utility interface, available with any ROOT release starting from version 6.32.001. In the subsequent
sections of this paper, we will discuss the design principles of the RNTupleInspector, demonstrate a
selection of its features, and discuss which features are still foreseen to be added.

2 Design principles of the RNTupleInspector
The primary goal behind the RNTupleInspector is to guide core experiment software experts towards
optimal use of the RNTuple data format, and by extension, optimal use of available storage resources.
The intended audience is diverse. In addition, we foresee the RNTupleInspector to be used by
developers working on various other (auxiliary) software projects that use RNTuple. Moreover, the
RNTupleInspector has proven to be useful in the internal development of RNTuple as well. An initial
version of the RNTupleInspector has been used, for example, to compare the storage efficiency of the
ATLAS DAOD_PHYS data format between RNTuple and TTree [4].

The RNTupleInspector is designed to be consistent with RNTuple’s data format specification [5]. In
brief, this data format is organized as follows: the RNTuple schema represents a (hierarchical) collection
of fields. A field (and possibly its subfields) represents a C++ type or class, or a collection thereof. In
the on-disk representation, fields are stored as columns of fundamental types. Each column is split into
pages, serving as the unit for compression (a compressed page size is typically in the order of 10-100
kB). A set of pages, covering a certain entry range, belonging to a fixed set of columns is represented by
a cluster. Clusters represent the units of data loaded into memory. In most cases, all columns can be
represented by a single cluster for a given page range. In case this is not possible, however, multiple
clusters may get bundled into a cluster group. This may happen for datasets larger than 100 GB, or in
cases where the RNTuple has been created by combining two or more previously existing RNTuples
(e.g., through merging). A visual representation of the on-disk data format is shown in Figure 1.

struct Event {
int id;
vector<Particle> particles;

};
struct Particle {

vector<int> trackerIds;
float energy;

};
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Figure 1: Visual representation of the RNTuple on-disk data format. The colour of each data member
in the code snippet corresponds to an RNTuple column.

The RNTupleInspector provides storage metrics both in elementary and aggregated form, in order to
cater to the largest number of use cases and users as possible. We explain the distinction below.
Concrete examples are provided in the following sections.

Elementary metrics Elementary metrics include compression and size information for entire
RNTuples, (sub)fields and columns. Here, (sub)fields and column are described by their own
RFieldTreeInspector and RColumnInspector types, respectively. The decision to use the name
RFieldTreeInspector rather than RFieldInspector is based on the fact that the storage information
provided by this inspector will also include the field’s subfields, if present. Inspector objects for fields

1https://root.cern/releases/release-63200/

https://root.cern/releases/release-63200/


and columns can be obtained from the main RNTupleInspector object through the field’s name or ID
or the column’s ID. Each *Inspector object comes with the following base functions: GetDescriptor,
GetCompressedSize and GetUncompressedSize. The descriptor of an RNTuple, field or column
already provides a set of metadata information, which for maintainability reasons we have decided not
to add directly to the inspector classes. Examples of such metadata information are the number of
entries, a field name, or the ID of the field a particular column belongs to. Some information specific to
the RNTuple, field or column that cannot be directly retrieved from its descriptor has been added to
the respective inspector. For example, the RNTupleInspector provides GetCompressionSettings, and
the RColumnInspector provides GetNPages.
The purpose of these elementary metrics is to give users fine-grained access to the storage information
of their dataset. They can be used in an exploratory setting, i.e. by querying an RNTupleInspector
object at the ROOT prompt. In addition, we foresee them being used by experiments to build their
own (EDM-specific) inspection tools and scripts, for example to fine-tune and validate the various I/O
parameters that can be configured during the writing of an RNTuple.

Aggregated information Next to elementary metrics, the RNTupleInspector provides a handful of
methods to conveniently get storage information at a glance. Currently, the following aggregated
information is available:

• Storage information per column type. This information is provided in two ways: in text form,
either as a table or CSV format (containing all relevant metrics), or as a histogram (containing a
specific metric).

• The distribution of page sizes for one or multiple columns. This information is provided as a
histogram. The column(s) can be specified by ID or by type.

• A graphical visualization of the on-disk layout of a dataset2. This shows a graphical
representation of how pages and clusters are organized on disk.

As the RNTupleInspector is under active development, we foresee more aggregated information
methods becoming available, in part guided by efforts from experiments in adopting RNTuple in their
framework.

3 The RNTupleInspector interface
The interface of the RNTupleInspector follows the conventions of the core RNTuple interface. A new
RNTupleInspector can be constructed via a factory method Create, which takes the name and a
string representing the storage location of an RNTuple:

using ROOT::Experimental::RNTupleInspector;
auto inspector = RNTupleInspector::Create("MyNTuple", "my_ntuple.root");

In the current implementation, all field- and column-level inspector information will be collected and
stored in memory upon construction of an RNTupleInspector. This is due to the fact that traversing
all fields and columns is anyways necessary in order to obtain RNTuple-wide storage information. This
means that for large datasets, some construction overhead is to be expected, but once the inspector has
been created, storage information can be obtained instantaneously. Once an RNTupleInspector has
been created, it can be used to obtain RNTuple-wide storage information and provides a way to get
inspectors for fields or columns in this dataset. For example, assuming the dataset has a field named
“muon_pt”, we can obtain a RFieldTreeInspector as follows:

auto muonPtFieldInspector = inspector->GetFieldTreeInspector("muon_pt");

Next to methods directly providing storage information, a number of convenience methods are provided
whose return value can aid the retrieval of storage information. To illustrate, suppose that our dataset
also contains the fields “electron_pt”, “photon_pt” and “jet_pt” in addition to the previously
mentioned “muon_pt” field. Obtaining the compression factor for each field using the
RNTupleInspector would look as follows:

2This feature will be available in an upcoming release of ROOT.



for (const auto &fieldId : inspector->GetFieldsByName("(.*)_pt") {
auto fieldInspector = inspector->GetFieldTreeInspector(fieldId);
auto compressionFactor =

fieldInspector.GetUncompressedSize() / fieldInspector.GetCompressedSize();
}

4 The RNTupleInspector by example
To demonstrate how the RNTupleInspector may be useful, we use a single file from the CMS
DoubleMuon NanoAOD Open Data datasets [6], which we have converted from the original TTree
format into RNTuple. We can use the RNTupleInspector::PrintColumnTypeInfo method to to get an
indication of which data types are prevalent in a particular data sample. For this particular sample,
this method provides us with the following output:

column type | count | # elements | compressed bytes | uncompressed bytes
----------------|---------|-----------------|-------------------|--------------------

Bit | 911 | 2116689026 | 35806567 | 2116689026
UInt8 | 31 | 88488810 | 22670624 | 88488810

SplitIndex64 | 19 | 43989237 | 9218504 | 351913896
SplitReal32 | 349 | 937027507 | 1599353585 | 3748110028
SplitUInt64 | 1 | 2315223 | 7028872 | 18521784
SplitInt32 | 67 | 222633788 | 40964672 | 890535152
SplitUInt32 | 2 | 4630446 | 16984 | 18521784

To understand how well this data is stored on disk, beyond the compression factor, it can be useful to
understand how well individual pages are filled for a particular column type. When writing an
RNTuple, pages are filled until a certain approximate size. The page gets compressed and written to
the current cluster once this approximate size has been reached. The size of the compressed page highly
depends on the column type and the kind of data it stores. This is well illustrated in the histograms
shown in Figure 2, produced by RNTupleInspector::GetPageSizeDistribution. The distribution of
the page sizes for float-type columns, which appears to follow some distribution, are very different from
those for index columns, which are more scattered. This can be explained by the fact that float-type
columns in the majority of cases contain physics data, typically following a certain distribution that
dictates the compression. In contrast, index columns store the offsets of vectors and other collections,
which are typically more arbitrarily distributed. In addition, the presence of empty vectors results in
repeated offset values, which compresses extremely well. This is reflected by the peak close to a page
size of 0 in Figure 2b.
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(a) 32-bit float columns.
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(b) 64-bit (integer) index columns.

Figure 2: Page size distribution for different RNTuple column types.

Finally, the storage layout of the dataset sample can be visualized through
RNTupleInspector::DrawStorageLayout. Visualizing the layout can help in understanding the impact
of some configuration options available during writing. One of these options is the use of buffered



writing which, when enabled, buffers the compressed pages in memory such that pages belonging to a
specific column can be grouped together in the cluster. By default, this setting is enabled. The layout
of our dataset sample with buffered writing enabled is shown in Figure 3. In comparison, a version of
the same dataset sample, written without buffering enabled, produces the layout visualization shown in
Figure 4.
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Figure 3: Storage visualization of an RNTuple “Events” with buffered writing enabled.
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Figure 4: Storage visualization of an RNTuple “Events” with buffered writing disabled.

5 Conclusions and outlook
In this paper, we introduced the RNTupleInspector utility, which is designed and developed to get
direct insights into the storage behaviour of a dataset stored in the RNTuple data format. The primary
goal of the RNTupleInspector is to help developers understand the impact of different RNTuple
writing settings on their data and how to potentially (further) optimize them.
The RNTupleInspector is available from ROOT 6.32.00 under the Experimental namespace, and will
evolve alongside RNTuple itself. Features still foreseen to be added are inspector methods on the
cluster and page level, as well as any additional features to help experiment software experts make the
transition from TTree to RNTuple successful.
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