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Abstract. As the High-Luminosity LHC era is approaching, the work on the next-
generation ROOT I/O subsystem, embodied by the development of RNTuple, is advanc-
ing fast with demonstrated implementations of the LHC experiments’ data models and
clear performance improvements over TTree data format. Part of RNTuple development
is to guarantee no change in the RDataFrame analysis flow despite the change in the un-
derlying data format. In this talk, we present integration of RNTuple and RDataFrame.
The engine can process RNTuple datasets on a local machine, sequentially with one core
or using implicit multithreading with multiple cores. Furthermore, RNTuple processing
is also introduced in the distributed RDataFrame layer. The new workflow is demon-
strated using existing RDataFrame analyses on one or multiple nodes with no change in
the API. One notable example is the tt̄ Analysis Grand Challenge benchmark, which is
also used as a blueprint to showcase differences in performance of (distributed) execution
with the two data formats.

1 Introduction
Many High Energy Physics data analyses depend on the ROOT software [1]. The ROOT native I/O
subsystem for the Large Hadron Collider (LHC) Runs 1 - 3 is TTree. However, starting with LHC Run
4, TTree is going to be replaced with the new I/O subsystem in the form of RNTuple. The technical side
of RNTuple and its readiness for production have been vastly demonstrated, for example, in [2] and [3].
In this contribution, the focus is given to the user side of the data format transition.

The users interact with ROOT data through an RDataFrame based analysis. The suggested way for
users to manipulate, process and analyse ROOT data is through RDataFrame. RDataFrame is the high
level interface offered by ROOT since 2018 (ROOT version 6.14) [4]. Without any modifications, the
same analysis code can be executed on a single core, implicitly on multiple cores of the same machine
or on many nodes of multiple machines using the Python-based distributed RDataFrame package [5]. It
has been demonstrated in [6] that the distributed analysis works well by running a benchmark analysis
code - Analysis Grand Challenge (AGC) [7]. The AGC provides a number of realistic analysis workflows
for the testing and optimising purposes. In [6], the AGC version 0.1.0 is used and the analysis is run
on an HPC system at CERN while the input data are stored in the native TTree format. Since then,



the RDataFrame implementation of AGC was updated to version 1.0, and most notably, the new data
format, the CMS NanoAOD is used now. In this publication, we perform the distributed AGC analysis
in a modified manner which is closer to what an end user of the ROOT software, the physicist analysing
the ROOT data, is going to experience. In particular, firstly, we run the analysis on the CERN web-
based platform SWAN [8] which allows to seamlessly run jobs on the HTCondor pools [9] using the Dask
scheduler from the Python Dask library. The details of the setup are described in Section 2. Secondly,
the input data are converted into the RNTuple format. The impact of the new data format on the user’s
analysis as well as the scaling test performance comparison results are given in Section 3. Finally, we
summarize the work done in Section 4.

2 Distributed analysis environment setup
As briefly mentioned in Section 1, the distributed analysis setup that is used in this study consists of a
few key elements, which are part of production services developed and maintained at CERN.

We make use of the web-based platform, SWAN, which provides the access to the CERN’s storage
system EOS [10]. It also exposes curated software stacks deployed via CernVM File System (CernVM-FS)
[11]. This provides users with all the software needed for the majority of the use cases. The analysis
application can be offloaded to the CERN HTCondor pools in a user-friendly way via the Dask plugin
available in SWAN. All these components used together, paired with the analysis software provided by
ROOT, constitute an interactive analysis environment that could resemble the first step towards CERN
Analysis Facility.

3 Distributed Analysis Grand Challenge with TTree and RNTuple
With the described distributed analysis setup, we can now move towards the comparison between an
analysis run with data stored in the TTree format compared to the same analysis reading data stored in
the RNTuple format. Here, we focus on the user side of transitioning to running the analysis with the
RNTuple data as well as the preliminary performance comparisons between the data analysis using either
of the two data formats. The current status of the analysis can be followed on the public repository [12].

3.1 User side
First of all, let us consider the user side. In order to run the AGC analysis, the user needs to specify a
number of input arguments. One of those is the input dataset which we call REMOTE DATA PREFIX
as the input AGC data for the RDataFrame implementation is stored on public EOS. In Listing 1, we
can see that what needs to be specified in order to run the RDataFrame analysis with either TTree or
RNTuple is only the path to the input dataset. In fact the rest of the code remains unchanged.

1 REMOTE_DATA_PREFIX:
2 str = "root :// eospublic.cern.ch//eos/root -eos/AGC/ttree/"
3

4 REMOTE_DATA_PREFIX:
5 str = "root :// eospublic.cern.ch//eos/root -eos/AGC/rntuple/"

Listing 1: Setting the REMOTE DATA PREFIX variable to demonstrate the seamless transition from
TTree to RNTuple for the user.

In order to compare whether the results of the AGC analysis implemented in the RDataFrame,
with either TTree or RNTuple are correct, we perform histogram validation. Post-analysis, we compare
122 histograms with the equivalent histograms from other execution policies. We obtain satisfactory
agreement with 120 histograms (100% of the bin-by-bin agreement), while for the remaining 2 histograms
we obtain <1% disagreement because of the bin migrations.

3.2 Performance comparison - the scaling test
Finally, we want to compare the performance results between the two data formats. As the RNTuple
binary format is being finalised1 [2], we compare the speedup times of the two versions of the analysis
(input data in TTree vs in RNTuple formats) rather than the absolute, end-to-end runtimes. The analyses
are run on full datasets available while the number of workers, each with one core, are being gradually
increased. The maximum number of workers in this study is 64.

1Provisionally this will happen at the end of 2024.



(a) TTree

(b) RNTuple

Figure 1: Speedup vs number of workers for the input data stored in (a) TTree and (b) RNTuple,
measured while running the AGC analysis on SWAN web-based platform using the HTCondor pools
scheduled via Dask. The blue line shows the measured and computed values while the black dashed line
represents the perfect theoretical scaling.

Figure 1 shows the two plots of speedup vs number of workers for the two data formats, TTree at
the top and RNTuple at the bottom, where speedup is relative to the measured time of running the
distributed analysis with 8 workers. The blue line shows the calculated speedup based on the measured
runtimes, while the black dashed line represents the ideal linear scaling that is theoretically expected.
The error bars of the speedups are included but are not visible due to the scaling of the graph.

It can be observed that for both TTree and RNTuple, the scaling begins to deflect from the ideal
starting at the 32 workers. For TTree the scaling for the 64 workers is at 6.6 instead of 8 while for
RNTuple it is at 6.2.

The non-idealities shown in these plots can be accounted for by the analysis reading remote data from
a highly congested storage system, using a shared HTCondor pool. The test setup is more geared towards
interactivity and user-friendliness than pure performance. The actual performance improvements that
RNTuple offers over TTree have been shown and demonstrated on many other occasions, for example, in
[2], [3] and [13].

4 Conclusion
This contribution aims at showing a few aspects of the state-of-the-art data analysis with ROOT RData-
Frame. The Analysis Grand Challenge is used as an example, so that the results can be verified and
compared to other execution policies. We show that the distributed RDataFrame computation works



well with both TTree and RNTuple, including the CERN infrastructure and resources which any user
with a CERN computing account has access to. Even though the transition from TTree to RNTuple is
non-trivial from the technical point of view [2], from the RDataFrame user perspective, such transition
is seamless. The performance of the two data formats is also validated by measuring the speedup times
of the distributed analyses.

Now that RDataFrame allows reading and processing RNTuple datasets, the focus will shift towards
improving the I/O scheduling algorithms of the tool, as well as keeping up with the new features of the
data format designed and developed according to the experiments requirements.
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