A Function-as-a-Task Workflow Management Approach
with PanDA and iDDS

Wen Guan'+*, Taudashi Maeno!"**, Torre Wenaus', Aleksandr Alekseev?, Fernando Harald
Barreiro Megin03, Kaushik D&, Edward Karavakis', Tatiana Korchuganovaz, FaHui Lin?,
Paul Nilsson', Zhaoyu Yang', Rui Zhang*, and Xin Zhao'on behalf of the ATLAS Computing
Activity

'Brookhaven National Laboratory, Upton, NY, USA
2University of Pittsburgh, Pittsburgh, PA, USA
3University of Texas at Arlington, Arlington, TX, USA
4University of Wisconsin-Madison, Madison, USA

Abstract. The growing complexity of high energy physics analysis often
involves running various distinct applications. This demands a multi-step data
processing approach, with each step requiring different resources and carrying
dependencies on preceding steps. It’s important and useful to have a tool to
automate these diverse steps efficiently.

With the Production and Distributed Analysis (PanDA) system and the
intelligent Data Delivery Service (iDDS), we provide a platform that describes
data processing steps as tasks and their sequences as workflows, seamlessly
orchestrating their execution in a specified order and under predefined
conditions, thereby automating the entire task sequence. In this presentation, we
will start by giving an overview of the platform’s architecture. Following that,
we’ll introduce a user-friendly interface where workflows are defined in Python
with multiple code blocks, with each block being implemented as a Python
function. We will then explain the process of converting Python functions into
executable tasks, scheduling them across distributed heterogeneous resources,
and managing their outputs through a messaging-based asynchronous result-
processing mechanism. Finally, we’ll showcase a practical example illustrating
how this platform effectively converts a machine learning hyperparameter
optimization processing to a distributed workflow in ATLAS at LHC.

1 Introduction

The Production and Distributed Analysis (PanDA) system [1, 2] manages workloads
originating from distributed users across diverse computing resources. One of PanDA’s key
advantages is its ability to abstract underlying computing resources, offering users a unified
interface to submit and manage workloads. This allows users to submit workloads without
needing knowledge of the computational resources, providing essential transparency in a
distributed environment.

*e-mail: wguan2@bnl.gov
**e-mail: tmaeno@bnl.gov
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.

The intelligent Data Delivery Service (iDDS) [3, 4] is a workflow orchestration system
in PanDA developed to automate the execution of complex and dynamic workflows. It
offers advanced features such as workflow descriptions with Directed Acyclic Graphs (DAG),
conditional branching, iterative sequences, and polymorphic workloads. Its flexibility in
handling complex workflows makes it suitable for a range of automation scenarios, enhancing
the ability of experiments to manage and process data efficiently.

With PanDA and iDDS, we have constructed a framework for distributed large-scale
workflow management. It has been successfully applied to support various use cases in
production, involving extensive data processing and different physics analyses in ATLAS [5]
at the LHC [6], Rubin Observatory (LSST) [7, 8] and other experiments. For example,
in ATLAS, it supports fine-grained data carousels, hyperparameter optimization (HPO),
and active learning; In the Rubin Observatory, it manages DAGs for sequencing data
processing [9].

As the number of use cases increases, managing different logical requirements and
dependencies has become more complex. We have developed a new approach using Python
decorators to convert local functions into distributed PanDA workloads. This enables easy
definition and management of workflow conditions and dependencies using Python.

m(é =3

iDDS PanDA

Figure 1: An integrated workflow with PanDA and iDDS, where iDDS automates
complex and dynamic workflows, and PanDA schedules workloads to large-scale distributed
heterogeneous computing resources.

2 Function-as-a-Task

iDDS coordinates and orchestrates task execution and data motion to streamline operations,
improving automation and efficiency. It automatically aggregates results from previous
workloads to trigger new ones, enhancing overall efficiency in large-scale operations.
However, emerging use cases, particularly those related to machine learning (ML),
require sophisticated condition handling and task dependencies, which often defy
straightforward descriptions in existing schemes. This complexity can result in discrepancies
between user expectations and system behaviors when defining complex dependency logic.
The function-as-a-task scheme simplifies the user interface for defining workflows. In this
approach, users write standard Python progragls and indicate selected functions with Python

User Python program

(=

(mommm——— \
iDDS !

DDS Flask appl (o Sendee
e ——mm—mm—— -
m 3.submit to panda L
- " oy
|

wsal [wsel —<
/ a9
HITP . 154
7.publish results) PanDA . . >
7 & recei 4,schedule to site T2 L :
1.upload source codes 2.submit ' Breceive results / 2} "
a AN X
(2
[| Workflow §j Work “Asym:ﬂesult!:
| .
I‘ iDDS Client II 6.download-source codes

5.rglln
FETTIII T
b WorkfAsyncResuil

(a) The architecture to manage function-as-a-task workflow (b) Convert functions to distributed jobs

Figure 2: Function-as-a-task workflow: (a) The architecture and related services used to serve
function-as-a-task workflows; (b) The flow to convert a local function with Python decorator
to PanDA jobs and execute the function at distributed computing resources.

decorators to be executed as distributed workloads. It offers flexibility for defining various
logics and dependencies within workflows.

A workflow with the function-as-a-task scheme involves three main parts, as shown in
Figure 2a:

e Managing Source Codes and Context: User source codes and contexts are zipped into
a file and uploaded to an HTTP cache service. Before loading functions on distributed
computing resources, the function wrapper downloads the source codes from the HTTP
cache and initializes the context. The execution context can be container-based, Conda-
based [10], or a standard Python environment.

e Converting and Executing Functions: Local functions are converted to PanDA jobs and
executed on distributed computing resources. Python decorators are used to convert local
functions and their parameters into strings that can be wrapped into PanDA jobs. When
these jobs are scheduled to distributed resources, the function wrapper loads and executes
the functions.

e Asynchronous Result Retrieval: The function result is transferred back from the function
executor to the function caller using an asynchronous result retrieval service. When the
function finishes, the result is sent back to the original function caller via this service, as
illustrated in Figure 2b.

The asynchronous result retrieval service facilitates the delivery of function outputs,
supporting both STOMP [11]-based and HTTP REST [12]-based services. Initially, it uses
STOMP to transfer data via an ActiveMQ [13] server efficiently. If there are issues loading
STOMP or accessing the ActiveMQ server, it falls back to the HTTP REST service. The
HTTP REST service communicates with the ActiveMQ server to keep a copy of the data
temporarily. The data receiver subscribes to the ActiveMQ service if possible; otherwise, it
falls back to the HTTP REST service.

The function-as-a-task scheme enables users to transparently run functions on distributed
computing resources via the PanDA system. It offers useful solutions for managing user
source codes, allowing the execution of compgex functions. Leveraging the existing PanDA

infrastructure and grid middleware, it requires no additional setup for sites and can scale
significantly. The asynchronous result retrieval service, based on a messaging publish-
subscribe model, enhances efficiency between function execution and the function caller.

3 Experiments

3.1 HyperParameter Optimization (HPO)

Listing 1: A Distributed HPO Example

@work(map_results=True)
def optimize_work (opt_params, retMethod=None, hist=True,
saveModel=False , input_weight=None, xxkwargs):

@workflow
def optimize_workflow ():

for i in range(n_iterations):
print("Iteration.%s" % i)

multi_jobs_kwargs_list = []
for j in range(n_points_per_iteration):
x_probe = bayesopt.suggest(util)

multi_jobs_kwargs_list.append(x_probe)

results = optimize_work (opt_params=params, opt_method=opt_method ,
retMethod=opt_method , multi_jobs_kwargs_list=multi_jobs_kwargs_list)

ted
request workflow cTonte! total transform total released unreleased finished 1
*! . username graph workflow name on tasks x : e :
id status tasks type files files filos filos
(utc)
2024-03-
6128 WenGuan | Finished plot optimize_iworkflow.optimize workflow_2024 03 06_13_18 47 06
13:18:47

Finished(10) N/A o o o 100%

2024-03-
6127 Wen Guan Finished plot optimize_iworkflow.optimize workflow 2024 03 06 13 18 41 06
13:18:45

Finished(10) N/A o o o 100%

2024-03-
6126 Wen Guan Finished plot optimize_iworkflow.optimize_workflow_2024_03_06_08_55 01 06
08:65:04

°

Finished(5) N/A o o o 100%

2024-03-
6125 Wen Guan Finished plot optimize_iworkflow.optimize_workflow_2024_03_06_08 5432 06
08:54:36

©

Finished(2) N/A o [o 100%

(a) Several example HPO workflows

tasks, sorted by jeditaskid-desc

Input files
D Task name Task Niost ®
os!
TaskType. Type C Group User Errors status S5
Parent B Nfinish %
Logged status Nfiles
Nfail %
optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_11_12_39 _6125_47808 ~
168807 2 20 100%
iDDS Wen Guan Errors
e optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_08_57_10_6125_47805
168804 20 100%
iDDS Wen Guan Errors
N optimize_iworkflow.optimize_workflow_2024_03_06_08_54_32_6125
168801 2 1 100%
iDDS Wen Guan Errors

(b) Example tasks for a workflow

Figure 3: Example HPO workflows: (a) Several HPO workflows: Each iteration is mapped
to a PanDA task. For instance, workflow 6128 has completed 10 tasks, corresponding to 10
iterations (The total number of tasks is 11 because the main workflow function is also mapped
to a PanDA task in this case). (b) Example tasks for workflow 6125: This workflow has 2
optimization iterations with 20 concurrent jobs per iteration.

We applied the function-as-a-task scheme to a HyperParameter Optimization (HPO)
workflow. As shown in Listing 1, the Python 4decorators @workflow and @work are used

to convert a local HPO program into a distributed workflow. In this example, the function
optimize_work is converted into PanDA tasks and executed at remote sites.

Figures 3a and 3b show some experiment jobs using the HPO workflow. In this workflow,
each iteration is mapped to a PanDA task with multiple concurrent jobs.

The function-as-a-task service allows users to update only a few lines of the original
program to map it to a distributed program, making everything else transparent. This greatly
simplifies the process of running tasks on distributed computing resources.

3.2 Al-assisted Detector Design at EIC (AID2E)

Our next step is to integrate the function-as-a-task scheme with the AID2E [14] project in
EIC [15]. This project employs Al and an iterative approach to optimize detector design
parameters, considering various detector objectives, as shown in Figure 4a.

Using PanDA/iDDS for highly scalable distributed workflows enables AID2E to address
complex optimization problems across multiple detector parameters and design objectives at
a scale that would otherwise be intractable.

In the initial iteration, we select multiple sets of detector parameters, conduct a detector
simulation for each set, and evaluate various detector objectives, such as resolution.
Subsequently, we determine new sets of detector parameters based on the objectives measured
in the previous iteration and perform detector simulations to obtain the objectives, which are
then used for the next iteration. This iterative process continues until we achieve satisfactory
detector objectives.

Using the function-as-a-task service, we will map the local detector evaluation functions
in AID2E to remote functions executed on distributed resources such as Grid [16], Cloud [17],
or HPC [18], as illustrated in Figure 4b.

-l

R
7/

-

‘Dnign Parameters ‘ ‘ Objectives ‘

function

- Grid/Cloud/HPC
KAy [ramotenat |
ﬁ'l e
<l Physics Detector Reconstructed
Design Parameters Objectives
) A\ =
Physics | { Detector \ [/ Reconstructed Etiveice Ly GO T
Events |\ Simulation ,—" Features (Beib }{Si'“”"““" GeeimD >
(a) AID2E (b) AID2E with function-as-a-task

Figure 4. AID2E: (a) A framework with Al assistance suggests design parameters for
multiple objectives [19]. For each group of design parameters, the EIC detector simulation
evaluates these parameters to meet the multiple objectives. (b) With function-as-a-task, we
convert local functions in AID2E to PanDA jobs and then execute the function at distributed
computing resources.

4 Conclusions

The PanDA and iDDS systems have provided workflow orchestration to streamline data
processing across diverse computing resources. In this paper, we introduced a new user-
friendly interface for using workflows in PanDA and iDDS. This interface allows users to
easily integrate local Python functions with PanDA and iDDS. The asynchronous result
retrieval service enhances data transfer between different functions, improving workflow
management.

In the future, we will continue our efforts to improve the system’s robustness, making it a
valuable tool for large scale distributed computing and machine learning in experiments such
in ATLAS at LHC, Rubin Observatory and EIC.

Acknowledgements

This manuscript has been authored by employees of Brookhaven Science Associates, LLC
under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by
accepting the manuscript for publication acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for United States Government
purposes.

References

[1] T. Maeno et al., PanDA: Production and Distributed Analysis System, Computing and
Software for Big Science (to be submitted)
[2] T. Maeno et al., Overview of ATLAS PanDA Workload Management, J . Phys.: Conf. Ser.
331, 072024 (2011)
[3] W. Guan et al., An intelligent Data Delivery Service for and beyond the ATLAS
experiment, EPJ] Web Conf. 251, 02007 (2021)
[4] W. Guan et al., Towards an Intelligent Data Delivery Service, EP] Web Conf. 245,
04015 (2020)
[5] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, J.
Inst. 3, SO8003 (2008)
[6] L. Evans and P. Bryant (editors), LHC Machine, J. Inst. 3, SO8001 (2008)
[7] Z.1vezic et al., LSST: From Science Drivers To Reference Design And Anticipated Data
Products, Astrophys. J., 873, 111 (2019)
[8] LSST Science Collaboration, Lsst science book, version 2.0 (2009), arXiv:0912.0201
[9] W. Guan et al., Distributed Machine Learning Workflow with PanDA and iDDS in LHC
ATLAS, EPJ Web Conf. 295, 04019 (2024)
[10] Conda package manager, https://docs.conda.io/en/latest/
[11] Simple Text Oriented Messaging Protocol, https://stomp.github.io/
[12] Representational State Transfer, https://fr.wikipedia.org/wiki/Representational_state_
transfer
[13] Apache ActiveMQ: Flexible and powerful open source multi-protocol messaging, https:
//activemq.apache.org/
[14] M. Diefenthaler et al., Ai-assisted detector design for the eic (aid(2)e), Journal of
Instrumentation 19, C07001 (2024)

[15] R. Ent, Electron ion collider, in the proceedings of the jluo meeting on nsac
long range plan, https://indico.jlab.org/event/589/contributions/10644/attachments/
8403/12002/EICTJJILUOLRP2022.pptx (2022)

[16] WLCG, https://wlcg.web.cern.ch/

[17] F. Barreiro Megino et al., Seamless Integration of Commercial Clouds with ATLAS
Distributed Computing, EP] Web Conf. 251, 02005 (2021)

[18] High-performance computing, https://en.wikipedia.org/wiki/High-performance_
computing

[19] C. Fanelli et al., Ai-assisted optimization of the ecce tracking system at the electron
ion collider, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 1047, 167748 (2023)

