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Abstract. The growing complexity of high energy physics analysis often
involves running various distinct applications. This demands a multi-step data
processing approach, with each step requiring different resources and carrying
dependencies on preceding steps. It’s important and useful to have a tool to
automate these diverse steps efficiently.
With the Production and Distributed Analysis (PanDA) system and the
intelligent Data Delivery Service (iDDS), we provide a platform that describes
data processing steps as tasks and their sequences as workflows, seamlessly
orchestrating their execution in a specified order and under predefined
conditions, thereby automating the entire task sequence. In this presentation, we
will start by giving an overview of the platform’s architecture. Following that,
we’ll introduce a user-friendly interface where workflows are defined in Python
with multiple code blocks, with each block being implemented as a Python
function. We will then explain the process of converting Python functions into
executable tasks, scheduling them across distributed heterogeneous resources,
and managing their outputs through a messaging-based asynchronous result-
processing mechanism. Finally, we’ll showcase a practical example illustrating
how this platform effectively converts a machine learning hyperparameter
optimization processing to a distributed workflow in ATLAS at LHC.

1 Introduction

The Production and Distributed Analysis (PanDA) system [1, 2] manages workloads
originating from distributed users across diverse computing resources. One of PanDA’s key
advantages is its ability to abstract underlying computing resources, offering users a unified
interface to submit and manage workloads. This allows users to submit workloads without
needing knowledge of the computational resources, providing essential transparency in a
distributed environment.
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The intelligent Data Delivery Service (iDDS) [3, 4] is a workflow orchestration system
in PanDA developed to automate the execution of complex and dynamic workflows. It
offers advanced features such as workflow descriptions with Directed Acyclic Graphs (DAG),
conditional branching, iterative sequences, and polymorphic workloads. Its flexibility in
handling complex workflows makes it suitable for a range of automation scenarios, enhancing
the ability of experiments to manage and process data efficiently.

With PanDA and iDDS, we have constructed a framework for distributed large-scale
workflow management. It has been successfully applied to support various use cases in
production, involving extensive data processing and different physics analyses in ATLAS [5]
at the LHC [6], Rubin Observatory (LSST) [7, 8] and other experiments. For example,
in ATLAS, it supports fine-grained data carousels, hyperparameter optimization (HPO),
and active learning; In the Rubin Observatory, it manages DAGs for sequencing data
processing [9].

As the number of use cases increases, managing different logical requirements and
dependencies has become more complex. We have developed a new approach using Python
decorators to convert local functions into distributed PanDA workloads. This enables easy
definition and management of workflow conditions and dependencies using Python.

Figure 1: An integrated workflow with PanDA and iDDS, where iDDS automates
complex and dynamic workflows, and PanDA schedules workloads to large-scale distributed
heterogeneous computing resources.

2 Function-as-a-Task

iDDS coordinates and orchestrates task execution and data motion to streamline operations,
improving automation and efficiency. It automatically aggregates results from previous
workloads to trigger new ones, enhancing overall efficiency in large-scale operations.

However, emerging use cases, particularly those related to machine learning (ML),
require sophisticated condition handling and task dependencies, which often defy
straightforward descriptions in existing schemes. This complexity can result in discrepancies
between user expectations and system behaviors when defining complex dependency logic.

The function-as-a-task scheme simplifies the user interface for defining workflows. In this
approach, users write standard Python programs and indicate selected functions with Python
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(a) The architecture to manage function-as-a-task workflow (b) Convert functions to distributed jobs

Figure 2: Function-as-a-task workflow: (a) The architecture and related services used to serve
function-as-a-task workflows; (b) The flow to convert a local function with Python decorator
to PanDA jobs and execute the function at distributed computing resources.

decorators to be executed as distributed workloads. It offers flexibility for defining various
logics and dependencies within workflows.

A workflow with the function-as-a-task scheme involves three main parts, as shown in
Figure 2a:

• Managing Source Codes and Context: User source codes and contexts are zipped into
a file and uploaded to an HTTP cache service. Before loading functions on distributed
computing resources, the function wrapper downloads the source codes from the HTTP
cache and initializes the context. The execution context can be container-based, Conda-
based [10], or a standard Python environment.

• Converting and Executing Functions: Local functions are converted to PanDA jobs and
executed on distributed computing resources. Python decorators are used to convert local
functions and their parameters into strings that can be wrapped into PanDA jobs. When
these jobs are scheduled to distributed resources, the function wrapper loads and executes
the functions.

• Asynchronous Result Retrieval: The function result is transferred back from the function
executor to the function caller using an asynchronous result retrieval service. When the
function finishes, the result is sent back to the original function caller via this service, as
illustrated in Figure 2b.

The asynchronous result retrieval service facilitates the delivery of function outputs,
supporting both STOMP [11]-based and HTTP REST [12]-based services. Initially, it uses
STOMP to transfer data via an ActiveMQ [13] server efficiently. If there are issues loading
STOMP or accessing the ActiveMQ server, it falls back to the HTTP REST service. The
HTTP REST service communicates with the ActiveMQ server to keep a copy of the data
temporarily. The data receiver subscribes to the ActiveMQ service if possible; otherwise, it
falls back to the HTTP REST service.

The function-as-a-task scheme enables users to transparently run functions on distributed
computing resources via the PanDA system. It offers useful solutions for managing user
source codes, allowing the execution of complex functions. Leveraging the existing PanDA

3



infrastructure and grid middleware, it requires no additional setup for sites and can scale
significantly. The asynchronous result retrieval service, based on a messaging publish-
subscribe model, enhances efficiency between function execution and the function caller.

3 Experiments

3.1 HyperParameter Optimization (HPO)

Listing 1: A Distributed HPO Example
@work ( m a p _ r e s u l t s=True )
def op t imize_work ( opt_params , r e tMe thod=None , h i s t=True ,

saveModel=F a l s e , i n p u t _ w e i g h t=None , ** kwargs ) :
. . .
@workflow
def o p t i m i z e _ w o r k f l o w ( ) :

. . .
f o r i in range ( n _ i t e r a t i o n s ) :

p r i n t ( " I t e r a t i o n ␣%s " % i )
m u l t i _ j o b s _ k w a r g s _ l i s t = [ ]
f o r j in range ( n _ p o i n t s _ p e r _ i t e r a t i o n ) :

x_probe = b a y e s o p t . s u g g e s t ( u t i l )
m u l t i _ j o b s _ k w a r g s _ l i s t . append ( x_probe )

r e s u l t s = op t imize_work ( op t_pa rams=params , opt_method=opt_method ,
r e tMe thod=opt_method , m u l t i _ j o b s _ k w a r g s _ l i s t=m u l t i _ j o b s _ k w a r g s _ l i s t )

. . .

(a) Several example HPO workflows

(b) Example tasks for a workflow

Figure 3: Example HPO workflows: (a) Several HPO workflows: Each iteration is mapped
to a PanDA task. For instance, workflow 6128 has completed 10 tasks, corresponding to 10
iterations (The total number of tasks is 11 because the main workflow function is also mapped
to a PanDA task in this case). (b) Example tasks for workflow 6125: This workflow has 2
optimization iterations with 20 concurrent jobs per iteration.

We applied the function-as-a-task scheme to a HyperParameter Optimization (HPO)
workflow. As shown in Listing 1, the Python decorators @workflow and @work are used
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to convert a local HPO program into a distributed workflow. In this example, the function
optimize_work is converted into PanDA tasks and executed at remote sites.

Figures 3a and 3b show some experiment jobs using the HPO workflow. In this workflow,
each iteration is mapped to a PanDA task with multiple concurrent jobs.

The function-as-a-task service allows users to update only a few lines of the original
program to map it to a distributed program, making everything else transparent. This greatly
simplifies the process of running tasks on distributed computing resources.

3.2 AI-assisted Detector Design at EIC (AID2E)

Our next step is to integrate the function-as-a-task scheme with the AID2E [14] project in
EIC [15]. This project employs AI and an iterative approach to optimize detector design
parameters, considering various detector objectives, as shown in Figure 4a.

Using PanDA/iDDS for highly scalable distributed workflows enables AID2E to address
complex optimization problems across multiple detector parameters and design objectives at
a scale that would otherwise be intractable.

In the initial iteration, we select multiple sets of detector parameters, conduct a detector
simulation for each set, and evaluate various detector objectives, such as resolution.
Subsequently, we determine new sets of detector parameters based on the objectives measured
in the previous iteration and perform detector simulations to obtain the objectives, which are
then used for the next iteration. This iterative process continues until we achieve satisfactory
detector objectives.

Using the function-as-a-task service, we will map the local detector evaluation functions
in AID2E to remote functions executed on distributed resources such as Grid [16], Cloud [17],
or HPC [18], as illustrated in Figure 4b.

 

(a) AID2E (b) AID2E with function-as-a-task

Figure 4: AID2E: (a) A framework with AI assistance suggests design parameters for
multiple objectives [19]. For each group of design parameters, the EIC detector simulation
evaluates these parameters to meet the multiple objectives. (b) With function-as-a-task, we
convert local functions in AID2E to PanDA jobs and then execute the function at distributed
computing resources.
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4 Conclusions

The PanDA and iDDS systems have provided workflow orchestration to streamline data
processing across diverse computing resources. In this paper, we introduced a new user-
friendly interface for using workflows in PanDA and iDDS. This interface allows users to
easily integrate local Python functions with PanDA and iDDS. The asynchronous result
retrieval service enhances data transfer between different functions, improving workflow
management.

In the future, we will continue our efforts to improve the system’s robustness, making it a
valuable tool for large scale distributed computing and machine learning in experiments such
in ATLAS at LHC, Rubin Observatory and EIC.
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