
Optimizing ANN-Based Triggering for BSM events
with Knowledge Distillation

Marco Lorusso1,2

1Department of Physics, University of Bologna, Bologna, Italy
2Bologna Division, Istituto Nazionale di Fisica Nucleare, Bologna, Italy

E-mail: marco.lorusso11@unibo.it

Abstract. In recent years, the scope of applications for Machine Learning, particu-
larly Artificial Neural Network algorithms, has experienced an exponential expansion.
This surge in versatility has uncovered new and promising avenues for enhancing data
analysis in experiments conducted at the Large Hadron Collider at CERN. The integra-
tion of these advanced techniques has demonstrated considerable potential for elevating
the efficiency and efficacy of data processing in this experimental setting. However, an
often overlooked aspect of utilizing Artificial Neural Networks is the imperative of effi-
cient data processing for online applications, crucial for selecting interesting events at the
trigger level, such as Beyond Standard Model (BSM) events. This study explores Au-
toencoders (AEs), unbiased algorithms capable of event selection based on abnormality
without theoretical priors. The unique latency and energy constraints within a trigger
domain necessitate tailored software and deployment strategies to optimize on-site hard-
ware, specifically Field-Programmable Gate Arrays (FPGAs). The strategy followed to
distill the teacher model will be presented, together with consideration on the difference
in performance of applying the quantization before or after the best architecture of the
student model has been found.

1 Introduction
In order to increase the discovery potential of the Large Hadron Collider (LHC) at CERN, as well as to
improve the precision of Standard Model physics measurements, the High Luminosity LHC (HL-LHC)
Project was setup in 2010 to extend its operability by another decade and to increase its luminosity (and
thus collision rate) by a factor of ∼ 10 beyond its design value.

With the purpose of fully exploiting the HL-LHC running period, major consolidations and upgrades
of all four main detectors at LHC are planned. The collision rate and level of expected pileup imply very
high particle multiplicity and an intense radiation environment and imposes serious challenges to the
Trigger system requirements in order to maintain performance, which pushes the need for technological
advances at the hardware level of the data acquisition system, as well as new software ones to increase
the physical acceptance of interesting events, while intensifying the efforts to identify and analyze events
which are not explainable with the Standard Model theory.

One of the most popular type of algorithms proposed to tackle these needs is the one commonly
known as Machine Learning, with a major focus on Artificial Neural Networks. In recent years, Machine
Learning has become one of the pillars of Computer and Data Science and it has been introduced in
almost every aspect of everyday life. This spread of learning algorithms in many sectors finds its roots
mainly in an increased quantity of data available, combined with a technological progress in storage and
computational power, which can nowadays be exploited with lower maintenance and material costs.

However, the latency and energy constraints of the first line of data acquisition at LHC experiments are
quite unique and create the necessity of specific software development and strategies to deploy Machine
Learning models efficiently on the hardware available on-site, like FPGAs.

Field Programmable Gate Arrays (FPGAs) combine the benefits of hardware and software by imple-
menting circuits for high performance and efficiency while being reprogrammable for various tasks. They
perform millions of operations simultaneously across a silicon chip, making them significantly faster than
microprocessor-based designs, and can be reprogrammed multiple times, unlike ASICs.

A candidate for using Machine Learning as a triggering mechanism at LHC is the research for Beyond
Standard Model events. The trigger selection algorithms are designed to guarantee a high acceptance
rate for certain physics processes under study. When designing ways to search for new physics kinds of
collisions (e.g., dark matter production), physicists typically consider specific scenarios motivated by the-
oretical considerations. This approach may become a limiting factor in the absence of a strong theoretical
prior. This is why unsupervised ML techniques, like Autoencoders, can be useful for new physics mining.
By deploying an unbiased algorithm which selects events based on their degree of abnormality, rather
than on the amount of energy present in the event, data can be collected in a signal-model-independent
way. Such an anomaly detection (AD) algorithm is required to have extremely low latency because of the
restrictions imposed by the frequency of new events at LHC, and this is why there is a need to optimize
and compress these kind of algorithm to make them suitable for trigger environments.

2 Anomaly Detection with Autoencoders
Anomaly detection (AD) aims to identify instances containing patterns that deviate from those observed
in normal instances [1]. This task is crucial in various vision applications, such as manufacturing de-
fect detection, medical image analysis, and video surveillance. Unlike typical supervised classification
problems, anomaly detection presents unique challenges. Primarily, it is difficult to obtain a substantial
amount of anomalous data, whether labeled or unlabeled. Additionally, the differences between normal
and anomalous patterns are often fine-grained, as defective areas can be small and subtle in high-resolution
images. Since the distribution of anomaly patterns is unknown in advance, models are trained to learn
the patterns of normal instances.

In practice, an instance is determined to be anomalous if it is not well-represented by these models.
Considering the peculiarities of this kind of task, AD is one of the popular application for Autoencoders
[2].

2.1 Autoencoders
An Autoencoder (AE) is a type of Neural Network that is trained to attempt to copy its input to its
output [3]. Internally, it usually comprises of a hidden layer h that describes a code used to represent
the input. The network can be viewed as made up of two parts: an encoder function h = f(x) and
a decoder that produces a reconstruction r = g(h). This architecture is presented in Figure 1. If an
Autoencoder succeeds in simply learning to set g(f(x)) = x everywhere, then it is not especially useful.
Instead, Autoencoders are designed to be unable to learn to copy perfectly. Usually they are restricted
in ways that allow them to copy only approximately, and to copy only input that resembles the training
data. Because the model is forced to prioritize which aspects of the input should be copied, it often learns
useful properties of the data.

Figure 1: The general structure of an autoencoder, mapping an input to an output (called reconstruction)
through an internal representation or code. The autoencoder has two components: the encoder and the
decoder.

Autoencoders with nonlinear encoder functions f and nonlinear decoder functions g can learn a more
powerful nonlinear generalization of Principal Component Analysis [4]. In other words, it is able to
simplify the data while preserving its essential patterns and structures.

3 Knowledge Distillation
Deploying large, accurate deep learning models to resource-constrained environments like FPGAs, mobile
phones, and smart cameras presents significant challenges. These models often have millions of parameters
requiring substantial storage, while on-device memory is limited. Additionally, a single model inference
can involve billions of memory accesses and arithmetic operations, which consume power, generate heat,
and drain battery life, or test the device’s thermal limits. To address these issues, research is focused
on compressing neural network models to reduce memory and computation demands while maintaining
model quality. Model compression not only reduces energy-intensive memory accesses but also improves
inference time by increasing effective memory bandwidth. Knowledge Distillation, a key approach in this
research, involves training a smaller student model to mimic a larger, complex teacher model, aiming to
achieve competitive performance with fewer resources [5], [6].

Figure 2: A schematic illustration of three different types of knowledge that can be transferred from a
deep teacher network: response-based knowledge, feature-based knowledge and relation-based knowledge.

Knowledge types, distillation strategies and the teacher-student architectures play a crucial role in
the student learning [7]. Indeed, there are three different categories of knowledge (see Figure 2):

Response-based It usually refers to the neural response of the last output layer of the teacher model.
The main idea is to directly mimic the final prediction of the teacher model. The response-based
knowledge distillation is simple yet effective for model compression, and has been widely used in
different tasks and applications;

Feature-Based Deep neural networks are good at learning multiple levels of feature representation with
increasing abstraction. This is known as representation learning. Therefore, both the output of the
last layer and the output of intermediate layers, i.e., feature maps, can be used as the knowledge
to supervise the training of the student model. Specifically, feature-based knowledge from the
intermediate layers is a good extension of response-based knowledge, especially for the training of
thinner and deeper networks;

Relation-Based Both response-based and feature-based knowledge use the outputs of specific layers in
the teacher model. Relation-based knowledge further explores the relationships between different
layers or data samples.

There are three main ways to transfer knowledge from a teacher to a student model. Offline Distillation
involves transferring knowledge from a pre-trained teacher model to a student model in two stages: the
teacher is first trained on a dataset, then it guides the student model’s training using extracted knowledge.

Online Distillation updates both the teacher and student models simultaneously in an end-to-end trainable
framework. Self-Distillation uses the same network for both teacher and student models by transferring
knowledge, for example, from deeper sections of a network to its initial sections.

4 The Case study
In order to test this approach to model compression, the aforementioned use of an Autoencoder to perform
physics mining of events not explainable using the Standard model was chosen [8]. A data sample was
selected that represents a typical proton-proton collision dataset that has been pre-filtered by requiring
the presence of an electron or a muon with a transverse momentum pT > 23 GeV and a pseudo-rapidity
|η| < 3 and |η| < 2.1, respectively. This is representative of a typical trigger selection algorithm of a
multipurpose LHC experiment. In addition to this, four benchmark new physics scenarios discussed were
considered [9]:

• A Leptoquark (LQ) with a mass of 80 GeV, decaying to a b quark and a τ lepton;

• A Neutral scalar boson (A) with a mass of 50 GeV, decaying to two off-shell Z bosons, each forced
to decay to two leptons: A → 4;

• A Scalar boson with a mass of 60 GeV, decaying to two tau leptons: h0 → ττ ;

• A charged scalar boson with a mass of 60 GeV, decaying to a tau lepton and a neutrino: h± → τν.

In total, the background sample consists of 8 million events. Of these, 50% are used for training, 40%
for testing and 10% for validation. The new physics benchmark samples are only used for evaluating the
performance of the models.

The architecture of the teacher model was an AE using convolutional layers (more details can be
found in [8]). The inputs consisted in pT , η, ϕ (azimuthal angle w.r.t. the LHC beam pipe) values for
18 reconstructed objects (ordered as 4 muons, 4 electrons, and 10 jets), and the ϕ and magnitude of
the missing transverse energy (MET), forming together an input of shape (19, 3) where MET η values
are zero-padded by construction (η is zero for transverse quantities). For events with fewer than the
maximum number of muons, electrons, or jets, the input is also zero-padded.

4.1 Quantization vs architecture
The work in this paper was done not only to simply test KD, but also to try to answer a question related
to the actual procedure to follow when trying to obtain a small model implementable on an FPGA. In
particular, when optimizing a NN for hardware inference, one must consider not only finding the optimal
architecture but also identifying the best quantization. Here for quantization is intended the conversion
of all parameters, e.g. weights, of a model to fixed-point numbers, better handled by FPGAs. In this case
the quantization is considered before performing the training of the students, falling into the Quantization
Aware Training category [10], achieved using QKeras [11].

Thus, the question arises: Is there a difference between searching for the best candidate with the
quantization process in mind versus without it? In other words, do the results differ when first iden-
tifying the optimal architecture and then determining the best quantization compared to performing a
hyperparameter search that simultaneously considers both aspects?

The strategy to answer to this was simple. Firstly a simple hyperparameter search with no quantisation
was performed to get the best student architecture; then, another search was done for the quantization
using the model obtained (Post search quantization). On the other hand, a single search was set up to
search the architecture and quantization parameters at the same time (Cosearch quantization).

The results of the two search strategies are presented in Figure 3 and 4 for ≈ 1000 student candidates.
These figures compare the distributions of the mean squared errors (MSE) of the models with respect
to the teacher for the different anomalies the students are expected to detect. It is evident how the
Cosearch quantization produces students with lower MSEs more consistently, with minimum values of
both searches that are basically the same.

This means that by performing architecture and quantization optimizations as a single hyperparameter
search, it is more likely to achieve a good model with fewer attempts, while also ensuring that both
procedures will ultimately yield nearly identical optimal candidates.

Finally, in Figure 5 the ROC curves of the best student found with Cosearch quantization are shown.
A good and very comparable with the teacher model performance was achieved, making this student a
very good candidate for a future implementation on FPGA in order to study its efficiency in latency and
hardware footprint.

Post search quantization Cosearch Quantization
0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Median (Post): 0.32956
Median (Co): 0.38720
75%ile (Post): 0.46179
75%ile (Co): 0.57341
25%ile (Post): 0.26691
25%ile (Co): 0.28291
Mood s median test:
p-value: 5.91504E-12

A 4

(a) A Neutral scalar boson (A) decaying to two off-shell Z
bosons, each producing two leptons: A → 4.

Post search quantization Cosearch Quantization
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
SE

Median (Post): 0.01647
Median (Co): 0.01955
75%ile (Post): 0.02552
75%ile (Co): 0.04231
25%ile (Post): 0.01351
25%ile (Co): 0.01462
Mood s median test:
p-value: 1.30768E-10

Leptoquark

(b) A Leptoquark decaying to a b quark and a τ lepton.

Figure 3: MSE loss distribution of student models w.r.t. a teacher model built using Post search and
Cosearch quantization for two of the 4 signals used for testing.

Post search quantization Cosearch Quantization
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
SE

Median (Post): 0.03971
Median (Co): 0.03874
75%ile (Post): 0.05374
75%ile (Co): 0.07594
25%ile (Post): 0.03235
25%ile (Co): 0.03128
Mood s median test:
p-value: 2.44505E-01

h±

(a) A charged scalar boson decaying to a τ lepton and a ν.

Post search quantization Cosearch Quantization
0.00

0.02

0.04

0.06

0.08

0.10

M
SE

Median (Post): 0.02445
Median (Co): 0.02613
75%ile (Post): 0.03396
75%ile (Co): 0.04813
25%ile (Post): 0.02002
25%ile (Co): 0.02031
Mood s median test:
p-value: 1.06085E-02

h0

(b) A Scalar boson decaying to two τ leptons.

Figure 4: MSE loss distribution of student models w.r.t. a teacher model built using Post search and
Cosearch quantization for two of the 4 signals used for testing.

5 Conclusions
In conclusion, this study addressed the critical aspect of efficient data processing for online applications
when utilizing Artificial Neural Networks, particularly for selecting interesting events at the trigger level,
such as Beyond Standard Model (BSM) events. By focusing on Autoencoders (AEs) — unbiased algo-
rithms capable of event selection based on abnormality without theoretical priors — this research tackled
the unique latency and energy constraints within the trigger domain, necessitating tailored software
and deployment strategies to optimize on-site hardware, specifically Field-Programmable Gate Arrays
(FPGAs). The study compared two different strategies for optimizing Neural Networks obtained from
the Knowledge Distillation of an Autoencoder, examining the performance differences between applying
quantization during the phase of identifying the best architecture and after. The results show that it is
more probable to find a good model by performing a combined hyperparameter search for both aspects
of the optimization, while also confirming that the best models in both cases are comparable.

10 6 10 4 10 2 100

False Positive Rate

10 6

10 4

10 2

100
Tr

ue
 P

os
iti

ve
 R

at
e

ROC LQ b
teacher AUC = 86%
0_Cosearch student AUC = 86%

10 6 10 4 10 2 100

False Positive Rate

10 6

10 4

10 2

100

Tr
ue

 P
os

iti
ve

 R
at

e

ROC A 4
teacher AUC = 88%
0_Cosearch student AUC = 87%

10 6 10 4 10 2 100

False Positive Rate

10 6

10 4

10 2

100

Tr
ue

 P
os

iti
ve

 R
at

e

ROC h±

teacher AUC = 90%
0_Cosearch student AUC = 90%

10 6 10 4 10 2 100

False Positive Rate

10 6

10 4

10 2

100

Tr
ue

 P
os

iti
ve

 R
at

e

ROC h0

teacher AUC = 75%
0_Cosearch student AUC = 73%

Figure 5: ROCs displaying the ability of the best student model (red) built with Cosearch quantization
to detect the 4 test signals, compared with the performance of the teacher model (green).

References
[1] C. L. Li et al., “Cutpaste: Self-supervised learning for anomaly detection and localization,” 2021.

arXiv: 2104.04015.
[2] R. Chalapathy et al., “Deep learning for anomaly detection: A survey,” 2019. arXiv: 1901.03407.
[3] I. Goodfellow et al., Deep Learning. MIT Press, 2016. [Online]. Available: http://www.deeplearningbook.

org.
[4] I. T. Jolliffe et al., “Principal component analysis: A review and recent developments,” Philos.

Trans. A Math. Phys. Eng. Sci., vol. 374, no. 2065, Apr. 2016. doi: 10.1098/rsta.2015.0202.
[5] C. Buciluundefined et al., “Model compression,” in Proceedings of the 12th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, ser. KDD ’06, 2006, pp. 535–541.
doi: 10.1145/1150402.1150464.

[6] G. Hinton et al., “Distilling the knowledge in a neural network,” 2015. arXiv: 1503.02531.
[7] J. Gou et al., “Knowledge distillation: A survey,” International Journal of Computer Vision,

vol. 129, no. 6, pp. 1789–1819, Mar. 2021, issn: 1573-1405. doi: 10.1007/s11263-021-01453-z.
[8] E. Govorkova et al., “Autoencoders on field-programmable gate arrays for real-time, unsupervised

new physics detection at 40 mhz at the large hadron collider,” Nature Machine Intelligence, vol. 4,
no. 2, pp. 154–161, Feb. 2022, issn: 2522-5839. doi: 10.1038/s42256-022-00441-3.

[9] O. Cerri et al., “Variational autoencoders for new physics mining at the large hadron collider,”
Journal of High Energy Physics, vol. 2019, no. 5, issn: 1029-8479. doi: 10.1007/jhep05(2019)036.

[10] C. N. Coelho Jr. et al., “Automatic deep heterogeneous quantization of Deep Neural Networks for
ultra low-area, low-latency inference on the edge at particle colliders,” Jun. 2020. arXiv: 2006.
10159.

[11] QKeras Github Repository. (2024), [Online]. Available: https://github.com/google/qkeras.

