
Using Legacy ATLAS C++ Calibration Tools in Modern

Columnar Analysis Environments

Matthew Feickert1, Nikolai Hartmann2, Lukas Alexander
Heinrich3, Alexander Held1, Evangelos Kourlitis3, Nils Erik
Krumnack4, Giordon Holtsberg Stark5, Matthias Vigl3 and
Gordon Watts6

1University of Wisconsin-Madison

2Ludwig Maximilians Universitat

3Technical University of Munich

4Iowa State University

5SCIPP, UC Santa Cruz

6University of Washington

E-mail: matthias.vigl@tum.de

Abstract. The ATLAS experiment at the LHC relies on crucial tools written in C++ to
calibrate physics objects and estimate systematic uncertainties in the event-loop analysis en-
vironment. However, these tools face compatibility challenges with the columnar analysis
paradigm that operates on many events at once in Python/Awkward or RDataFrame envi-
ronments. Those challenges arise due to the intricate nature of certain tools, as a result of
years of continuous development, and the necessity to support a diverse range of compute
environments. In this work, we present the ATLAS R&D efforts to adapt these legacy tools
to be used in both event-loop and columnar environments with minimal code modifications.
This approach enables on-the-fly calibration and uncertainties calculations, minimizing the
reliance on intermediate data storage. We demonstrate the functionality of this approach in
a Python Jupyter notebook that reproduces a toy Z-boson-peak analysis.

1 Introduction
The ATLAS experiment [1] has traditionally relied on event-loop processing for analysing High Energy
Physics (HEP) data, which typically contains variable-length lists of reconstructed objects and features
per event: e.g. tracks, jets, leptons etc. On the other hand, the scientific Python ecosystem offers
powerful tools that typically work with rectilinear arrays and are thus able to process multiple events
at once. While the ROOT [2] data format, currently employed for DAOD PHYSLITE [3], supports
columnar reading of these single-jagged structures by storing event offsets separately from the data,
ATLAS calibration tools are designed to operate as part of the ATLAS software stack, using the data
access layer from this event-wise framework. In recent years, there has been a notable shift towards the
use of data frames (tabular data structures) and array programming APIs for data analysis, driven by
user demand. In the field of HEP, two common columnar environments have emerged: RDataFrame [4]
and the Scientific Python ecosystem. In this sense, columnar analysis can be thought of as the HEP



equivalent of array programming, where the goal is to benefit from compact and expressive syntax for
accessing, manipulating, and operating on data in arrays. With the advent of these columnar data
analysis paradigms, sketched in Figure 1, there is a need to adapt the legacy correction tools to work
efficiently in modern environments that leverage Python and columnar data processing libraries [5], such
as Awkward [6] and RDataFrame. In practical terms, this means that correction tools must be able to
operate on multi-object/event arrays, or columns. Additionally they need to be fast and simple enough
to enable interactive use of these tools for on-the-fly analysis on PHYSLITE data. This would eliminate
the need to write out intermediate n-tuples and systematic variations to disk, significantly reducing data
storage requirements which is especially important for the HL-LHC era and beyond [7] [8].

Figure 1: Comparison of Event Loop and Columnar Data Processing: the left diagram illustrates the
traditional event loop processing where each event is processed sequentially, while the right diagram
depicts the columnar data processing approach where data for each variable is stored in contiguous
arrays, allowing for parallel processing. [9]

2 PHYSLITE data format
The PHYSLITE data format is designed as a common, monolithic, and unskimmed format, where only
a selected set of variables is written out to disk. This format contains already calibrated objects that
are loosely preselected, making it highly efficient and streamlined for fast analysis, with the plans of
covering 80% of all ATLAS physics analyses. It will be the main format for ATLAS during HL-LHC
and it’s already available for both analysis and R&D purposes. The idea is to have frequent PHYSLITE
productions, with the potential for up to 6-8 production cycles per year, ensuring that the data remains
current and reflective of the latest experimental conditions and recommendations.

3 ATLAS calibration tools
Calibration tools are software algorithms, developed and maintained by the ATLAS collaboration, that
ensure accurate measurement and calibration of various physics objects. All these tools are a result of
continuous development, with each serving a specific purpose dealing e.g. with jet energy calibration, tag-
ging efficiencies and systematic uncertainties. This group of tools, techniques, and procedures is referred
to as ATLAS combined performance (CP). For this prototype we demonstrate a columnar conversion of
the EGamma Scale Factor and Smearing tools [10], which are used to compute electron scale factors and
momentum corrections. Given that objects in PHYSLITE are already calibrated, we are only interested
in deriving systematic variations with this set of tools.

4 Columnar Triple use tools
ATLAS CP tools are primarily written in C++ and are designed to perform intricate and complex
calculations within the event-loop analysis environment. While we want columnar CP tools to extend
and enhance the analysis experience for ATLAS by leveraging columnar environments, it’s also import to
continue supporting event-wise processing through frameworks like Athena and EventLoop, as sketched in
Figure 2. This goal should be achieved avoiding extensive re-writing of the existing CP tools but instead
by converting them with minimal code modifications to allow usage in columnar frameworks.



4.1 EDM Access Library
The result of this ongoing effort is a ColumnarProtoype 1 in which data access is facilitated through
an abstract interface, that has a compile time switch to adapt it for the different environments. In the
event-wise framework it relies on the existing xAOD classes for data access. In columnar frameworks
the prototype wraps raw pointers and indices directly, leading to minimal overhead for data access.
Event boundaries are stored as separate offset columns, one for each object container. This model also
provides an easy option for implementing additional data access modes, if needed in the future. The class
interfaces and names of the prototype are chosen to match the existing xAOD classes closely: this makes
it straightforward to migrate the parts of the CP tools that have a direct columnar equivalent, and focus
the migration effort on the few places that need deeper changes to work in columnar environments.

Figure 2: Schematic view of the event-wise and columnar data processing environments ATLAS CP tools
need to support.

4.2 Python bindings
After building the C++ ColumnarProtoype infrastructure for tools conversion, we wrap the ATLAS
CP tools in a user-friendly Python interface. This involves accessing external array data from Python,
performing the necessary computations in C++, and then returning the results back to Python. This
process is highly efficient, with no slowdown thanks to zero-copy operations. The Python binding 2 that
glues the C++ code to the Python environment is achieved with nanobind [11].

Figure 3: The user interacts with the core tools only through an API that’s idiomatic within the Python
ecosystem, while the intricacy of the C++ implementations are hidden and glued to the Python environ-
ment with nanobind.

5 Z→ e+e− demo
We demonstrate how such a prototype for columnar tools can be integrated into a simple analysis through
a Python Jupyter notebook 3 that reproduces a toy Z-boson-peak. The overall analysis flow follows
previous work [12] that demonstrated how to converted PHYSLITE into columnar form using Uproot [13]
and Awkward Array, and presented a proof of concept for simple analysis applications. To showcase how
the whole packaging would ideally be handled, we ship the two prototype tools in an atlascp package that

1https://gitlab.cern.ch/krumnack/ColumnarPrototype2/-/tree/master?ref_type=heads
2https://gitlab.cern.ch/gstark/pycolumnarprototype/-/tree/main?ref_type=heads
3https://gitlab.cern.ch/gstark/pycolumnarprototype/-/blob/py_el_tool_test/Zee_demo.ipynb?ref_type=heads

https://gitlab.cern.ch/krumnack/ColumnarPrototype2/-/tree/master?ref_type=heads
https://gitlab.cern.ch/gstark/pycolumnarprototype/-/tree/main?ref_type=heads
https://gitlab.cern.ch/gstark/pycolumnarprototype/-/blob/py_el_tool_test/Zee_demo.ipynb?ref_type=heads


would contain all the relevant ATLAS tools in the final design. The user would then simply import tools
from different CP groups from this package: in this case we import the two EgammaTools 4.

from atlascp import EgammaTools

These tools can then directly operate on both regular numpy or awkward arrays following the syntax in
Figure 4, where we can compute e.g. the pT correction for a chunk of electrons at once.

Figure 4: Columns are passed to CP tools which return new columns a chunk at a time.

In the notebook, data from PHYSLITE are loaded to awkward arrays with Uproot and the Coffea
framework [9] and events are filtered by selecting e+e− final states. The scale factor tool is then applied
to get the nominal Z-boson-peak shown in black in Figure 5, together with up and down systematic
variations. These are then combined with systematics from the Smearing tool to finally get the full set
of systematics shown in different colors in the same plot. While this prototype allows to scale up to
multiple files using e.g. dask-awkward, testing and performance assessment of the dask implementation
is still ongoing.

Figure 5: Distribution of the dilepton mass with different colors corresponding to the nominal distribution
and various systematic variations, computed on-the-fly on PHYSLITE simulation with columnar CP
tools prototypes. The hatched area represents the overall systematic uncertainty as the envelope of all
variation. [14]

6 Conclusions
We demonstrate two EGamma tools successfully operating in a columnar fashion within a Python envi-
ronment, computing corrections and uncertainties on-the-fly directly on PHYSLITE. This effort was part
of the prototyping and review phase of the columnar data operations in ATLAS, which is anticipated to
conclude by the end of 2024. Development and discussion on the precise technical pathway for developing
columnar CP tools is currently ongoing.

4https://gitlab.cern.ch/gstark/pycolumnarprototype/-/blob/py_el_tool_test/atlascp/EgammaTools.py?ref_

type=heads

https://gitlab.cern.ch/gstark/pycolumnarprototype/-/blob/py_el_tool_test/atlascp/EgammaTools.py?ref_type=heads
https://gitlab.cern.ch/gstark/pycolumnarprototype/-/blob/py_el_tool_test/atlascp/EgammaTools.py?ref_type=heads


References
[1] ATLAS collaboration. The ATLAS Experiment at the CERN Large Hadron Collider. JINST,

3:S08003, 2008.

[2] R. Brun and F. Rademakers. ROOT: An object oriented data analysis framework. Nucl. Instrum.
Meth. A, 389:81–86, 1997.

[3] Jana Schaarschmidt, James Catmore, Johannes Elmsheuser, Lukas Heinrich, Nils Krumnack, Serhan
Mete, and Nurcan Ozturk. PHYSLITE - A new reduced common data format for ATLAS. EPJ
Web Conf., 295:06017, 2024.

[4] Danilo Piparo, Philippe Canal, Enrico Guiraud, Xavier Valls Pla, Gerardo Ganis, Guilherme Amadio,
Axel Naumann, and Enric Tejedor. RDataFrame: Easy parallel ROOT analysis at 100 threads. EPJ
Web Conf., 214:06029, 2019.

[5] Charles R. Harris et al. Array programming with NumPy. Nature, 585(7825):357–362, 2020.

[6] Jim Pivarski, Peter Elmer, and David Lange. Awkward Arrays in Python, C++, and Numba. EPJ
Web Conf., 245:05023, 2020.

[7] Evangelos Kourlitis. HL-LHC and Beyond Computing Challenges. PoS, LHCP2023:112, 2024.

[8] Johannes Elmsheuser et al. Evolution of the ATLAS analysis model for Run-3 and prospects for
HL-LHC. EPJ Web Conf., 245:06014, 2020.

[9] Nicholas Smith et al. Coffea: Columnar Object Framework For Effective Analysis. EPJ Web Conf.,
245:06012, 2020.

[10] ATLAS collaboration. Electron and photon energy calibration with the ATLAS detector using LHC
Run 2 data. JINST, 19(02):P02009, 2024.

[11] Wenzel Jakob. nanobind: tiny and efficient c++/python bindings, 2022.
https://github.com/wjakob/nanobind.

[12] Nikolai Hartmann, Johannes Elmsheuser, and Günter Duckeck. Columnar data analysis with ATLAS
analysis formats. EPJ Web Conf., 251:03001, 2021.

[13] Jim Pivarski, Henry Schreiner, Angus Hollands, Pratyush Das, Kush Kothari, Aryan Roy, Jerry Ling,
Nicholas Smith, Chris Burr, and Giordon Stark. Uproot, February 2024. 10.5281/zenodo.10699405.

[14] Vangelis Kourlitis, Matthias Vigl, Nils Erik Krumnack, Matthew Feickert, Giordon Holtsberg Stark,
Lukas Alexander Heinrich, Gordon Watts, Alexander Held, and Nikolai Hartmann. Using Legacy
ATLAS C++ Calibration Tools in Modern Columnar Analysis Environments - Poster for ACAT
2024. https://cds.cern.ch/record/2905022.


	Introduction
	PHYSLITE data format
	ATLAS calibration tools
	Columnar Triple use tools
	EDM Access Library
	Python bindings

	Ze+e- demo
	Conclusions

