
Optimizing Resource Provisioning Across Diverse

Computing Facilities with Virtual Kubelet Integration

Vardan Gyurjyan, Graham Heyes, Christopher Larrieu, David
Lawrence, Jeng-Yuan Tsai

Thomas Jefferson National Accelerator Facility, Newport News, VA, USA

E-mail: {gurjyan, heyes, larrieu, davidl, tsai}@jlab.org

Abstract. The Jefferson Lab Integrated Research Infrastructure Across Facilities (JIRIAF)
project addresses the critical challenges of managing large-scale distributed computing envi-
ronments. This initiative presents the architecture and core components of JIRIAF, empha-
sizing its capability to efficiently migrate and scale workloads across multiple sites, utilize
opportunistic resources, and maintain system integrity in user space. Central to JIRIAF’s
architecture is the JIRIAF Resource Manager (JRM), which employs a Virtual Kubelet to
leverage Kubernetes in environments lacking root access. The proof of concept demonstrates
JIRIAF’s effectiveness through the deployment of data-stream processing pipelines on the
Perlmutter system at NERSC, utilizing the CLAS12 event reconstruction application. Addi-
tionally, we simulated a queue system using a digital twin model to demonstrate the potential
for enhancing real-time monitoring and control capabilities with a Dynamic Bayesian Network
(DBN). The results highlight JIRIAF’s robust framework for optimizing resource allocation
and improving computational efficiency across heterogeneous high-performance computing
environments.

1 Introduction
The Jefferson Lab Integrated Research Infrastructure Across Facilities (JIRIAF) project aims to stream-
line the management of large-scale distributed infrastructures. This initiative addresses several critical
challenges faced in modern high-performance computing environments, including the efficient migration
and scaling of workloads across multiple computing sites, the intelligent utilization of opportunistic re-
sources to enhance overall efficiency, and the maintenance of system integrity while operating in user
space. By leveraging advanced architectural designs and state-of-the-art technologies, JIRIAF provides a
robust framework for resource management and computational efficiency. This document outlines the mo-
tivation behind JIRIAF, delves into its sophisticated architecture, highlights the core components such as
the JIRIAF Resource Manager (JRM), and presents proof-of-concept implementations demonstrating its
efficacy. Additionally, the integration of a digital twin model for simulated stream processing showcases
the innovative approaches employed to optimize computational resource allocation in high-throughput
systems.

2 Motivation
The primary motivation behind JIRIAF is to streamline the management of large-scale distributed infras-
tructures, addressing key challenges such as efficiently migrating and scaling workloads across multiple
computing sites, intelligently utilizing opportunistic resources to enhance overall efficiency, and main-
taining system integrity while operating in user space. A distinguishing highlight of JIRIAF is its ability



to utilize the Kubernetes framework [1] to orchestrate diverse HPC resources without requiring special
administrative approvals or root-level access. This contrasts with traditional systems such as HTCondor
[2], OpenStack [3], Apache Mesos [4], and Slurm [5], which typically require administrative privileges
for effective deployment and operation. These constraints often limit their applicability in environments
where users lack control over infrastructure configurations. JIRIAF overcomes these limitations by em-
ploying the Virtual Kubelet [6], which enables rootless Kubernetes-like functionality, allowing users to
seamlessly execute containerized workflows across heterogeneous HPC facilities. By leveraging these
unique innovations, JIRIAF ensures accessibility and user independence from administrative restrictions,
making it a robust solution for modern distributed computing challenges.

3 Architecture
The JIRIAF architecture [7] is meticulously designed to enable seamless integration and efficient resource
management across diverse computing facilities. At the heart of this system is the JFM (JIRIAF Facility
Manager), responsible for maintaining a dynamic resource pool by periodically scraping data from each
computing facility to ensure an up-to-date inventory of available resources. The JCS (JIRIAF Central
Service) functions as the central command, initiating pilot jobs through the JRM (JIRIAF Resource
Manager). The JRM, which can operate in userspace to accommodate heterogeneous HPC setups, leases
resources reported by the JFM, awaiting utilization. The JMS (JIRIAF Matching Service Algorithm)
then steps in to update the available resource database, aligning resources with user requests. The JFE
(JIRIAF Front End) finalizes the process by managing user requests and populating the user workflow
request table. This comprehensive architecture is depicted in Figure 1, illustrating JIRIAF’s commitment
to providing a seamless and efficient computing environment.

Figure 1: JIRIAF System Architecture and Workflow: This figure visually represents the sophisticated
architecture of JIRIAF, emphasizing the roles and interconnectivity of its key components — the JFM,
JCS, JRM, JMS, and JFE. By illustrating the flow of data and control across these components, the
diagram elucidates the dynamic and efficient resource management system designed to optimize high-
performance computing across heterogeneous environments.

4 Core Component - JIRIAF Resource Manager
JRM serves as an integral component of the framework, effectively leveraging the Kubernetes framework
with Virtual Kubelet [6, 8]. A fundamental Kubernetes cluster comprises a master node/control plane
that oversees cluster management and worker nodes with kubelets connected to the containerd socket
for container execution. Given that installing a regular kubelet necessitates root credentials, which are
typically unavailable to ordinary users at compute sites, we employ the Virtual Kubelet to circumvent
this limitation while still utilizing the Kubernetes framework. The Virtual-Kubelet-Cmd (VK) is a virtual
kubelet implemented using BASH commands and operates in userspace. It translates a container into a
BASH script composed of several processes. This approach serving as JRM allows JIRIAF to execute



user applications as containers across various computing sites by simply running BASH commands in
userspace, all the while ensuring unified control and monitoring through Kubernetes.

5 Proof of Concept
A 40-node reservation on the Perlmutter system at NERSC was activated to deploy data-stream pro-
cessing pipelines. This deployment utilized the JIRIAF framework across the JIRIAF Kubernetes cluster
nodes, each executing the CLAS12 event reconstruction application. This application was optimized to
fully leverage all available processing cores within the ERSAP framework [9] (see Figure 2).

To demonstrate the effectiveness of JIRIAF, a proof of concept was conducted using the CLAS12
experiment [10]. Event streams were transmitted to the NERSC computing facility via the EJFAT
transport system. JRMs/VKs were deployed on 40 nodes within the NERSC cluster for stream processing
workflows. The ERSAP workflow was deployed for CLAS12 reconstruction.

JRMs/VKs of JIRIAF as agents were deployed by the SLURM batch job system at NERSC. These
JRMs formed K8s nodes waiting for deployments. The ERSAP processing application was containerized
and uploaded to the Shifter container hub at NERSC. A Kubernetes deployment applied to the Kuber-
netes API server on the control-plane at JLAB. The monitoring system scraped and stored metrics data
on the control-plane at JLAB as shown in Figure 3.

Leased by JRMs of JIRIAF

Sender Receiver

Figure 2: The ERSAP framework utilized in the JIRIAF deployment on the Perlmutter compute nodes
at NERSC. The CLAS12 event reconstruction application ran on each node in the JIRIAF Kubernetes
cluster, demonstrating the JIRIAF deployment’s effectiveness in handling high-volume data-stream pro-
cessing.

6 Digital Twin for Simulated Stream Processing System
In the broader context of our study on optimizing computational resource allocation in high-throughput
systems, we simulated a queue system using a digital twin model to demonstrate the potential for enhanc-
ing real-time monitoring and control capabilities with a Dynamic Bayesian Network (DBN) [11]. The
digital twin component leverages a DBN to simulate the behavior of a queue system, providing valuable
insights into system dynamics and aiding in decision-making processes. We utilized the code from [12]
to build our DBN model, demonstrating the practical application of their proposed framework.

6.1 Digital Twin Model and Methodology
The digital twin model was developed to mirror the state and behavior of a physical queue system, com-
prising a stream sender and receiver with a FIFO queue. The DBN framework was employed to capture
dependencies among system variables, offering a probabilistic approach to real-time data assimilation and
state estimation. Our experimental setup involved adjusting the event sending rates (λ) and measuring
the resulting processing rates (µ) and observed queue lengths (Obs. Lq) under different computational



Figure 3: Monitoring system metrics scraped from applications during the JIRIAF deployment. The
figure shows the metrics collected by the monitoring system, providing insights into the performance and
resource utilization of the deployed CLAS12 event reconstruction application across the NERSC cluster
nodes. These metrics are crucial for evaluating the effectiveness and efficiency of the JIRIAF framework
in a high-performance computing environment.

capacities (16 and 32 threads). The theoretical queue length (Calc. Lq) was calculated using the M/M/1
queue theory equation:

Lq =
λ2

µ(µ− λ)
(1)

The data collected from these experiments were used to construct and validate the DBN model, en-
abling it to make accurate state predictions and recommend optimal control actions. The DBN structure
is depicted in Figure 4, illustrating the relationships between the digital twin state (D(t)), control (U(t)),
and observation (O(t)) nodes.

…D(0)

O(0)

U(0)

D(tc)

O(tc)

U(tc)

D(tp)

U(tp)

…

Figure 4: Dynamic Bayesian Network representation of the digital twin. It consists of the nodes D(t),
O(t), and U(t).

6.2 States Evolving Over Time
The digital twin’s state evolves as new observations ot are assimilated over time as shown in Figure 5.
The digital twin accurately tracks the ground truth state during periods of increasing queue lengths but
exhibits a delay during periods of decreasing queue lengths. As time progresses, particularly beyond the
80-time unit mark, a noticeable variation in the predicted state occurs, indicated by the red shaded area.
Overall, the digital twin demonstrates strong performance in aligning with the observed data for most of
the time period.

7 Acknowledgements
This project is funded through the Thomas Jefferson National Accelerator Facility LDRD program. This
material is based upon work supported by the U.S. Department of Energy Office of Science Office of
Nuclear Physics under contract DE-AC05-06OR23177.



Figure 5: Evolving State Over Time. The plot shows how the digital twin assimilates observed data
and estimates the state over time. The black line represents the ground truth, the blue line indicates
the estimated state, and the red dashed line shows the predicted state. The red and blue shaded areas
represent the variation of estimated and predicted states, respectively.

References
[1] Production-grade container orchestration. https://kubernetes.io. Accessed: 2024-07-14.

[2] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice: The condor
experience. Concurrency and Computation: Practice and Experience, 17(2-4):323–356, 2005.

[3] Openstack: The open source cloud computing software. https://www.openstack.org. Accessed:
2024-07-14.

[4] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph, Randy Katz,
Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the data
center. In NSDI, volume 11, pages 295–308, 2011.

[5] Moe Jette, Andy Yoo, and Mark Grondona. Slurm: Simple linux utility for resource management.
In Workshop on Job Scheduling Strategies for Parallel Processing, pages 44–60. Springer, 2003.

[6] Virtual Kubelet. Virtual kubelet project. https://github.com/virtual-kubelet/
virtual-kubelet. Accessed: 2024-07-14.

[7] Gyurjyan Vardan, Larrieu Christopher, Heyes Graham, and Lawrence David. Jiriaf: Jlab integrated
research infrastructure across facilities. In EPJ Web of Conferences, volume 295, page 04027. EDP
Sciences, 2024.

[8] Jefferson Lab. Jiriaf 0.1. https://github.com/JeffersonLab/jiriaf-0.1. Accessed: 2024-07-14.

[9] Gyurjyan Vardan, Abbott David, Goodrich Michael, Heyes Graham, Jastrzembski Ed, Lawrence
David, Raydo Benjamin, and Timmer Carl. Streaming readout and data-stream processing with
ersap. In EPJ Web of Conferences, volume 295, page 02025. EDP Sciences, 2024.

[10] S Boyarinov, B Raydo, C Cuevas, C Dickover, H Dong, G Heyes, D Abbott, W Gu, V Gyur-
jyan, E Jastrzembski, et al. The clas12 data acquisition system. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
966:163698, 2020.

[11] Kevin Patrick Murphy. Dynamic bayesian networks: representation, inference and learning. Univer-
sity of California, Berkeley, 2002.

[12] Michael G Kapteyn, Jacob VR Pretorius, and Karen E Willcox. A probabilistic graphical model
foundation for enabling predictive digital twins at scale. Nature Computational Science, 1(5):337–
347, 2021.

https://kubernetes.io
https://www.openstack.org
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/JeffersonLab/jiriaf-0.1

	Introduction
	Motivation
	Architecture
	Core Component - JIRIAF Resource Manager
	Proof of Concept
	Digital Twin for Simulated Stream Processing System
	Digital Twin Model and Methodology
	States Evolving Over Time

	Acknowledgements

