
Fully containerized approach for the HPC cluster at 
FAIR 

M.	Al-Turany1,	D.	Bertini1,	M.	Dessalvi1,	S.	Fleischer1,	R.	Grosso1,	 	
	T.	Kollegger1,2,	D.	Kresan1*,	V.	Penso1	and	C.	Preuß1	

1	IT,	GSI	Helmholtz	Center	for	Heavy	Ion	Research	GmbH,	Darmstadt,	Germany	
2	Institute	for	Computer	Science,	Goethe-University,	Frankfurt	am	Main,	Germany	
	
*E-mail:	D.Kresan@gsi.de	
	
Abstract.	 The	 scienti*ic	 program	of	 the	 future	FAIR	 accelerator	 covers	 a	 broad	
spectrum	of	topics	in	modern	nuclear	and	atomic	physics.	This	diversity	leads	to	a	
multitude	of	use	cases	and	work*lows	for	the	analysis	of	experimental	data	and	
simulations.	 To	 meet	 the	 needs	 of	 such	 a	 diverse	 user	 group,	 a	 *lexible	 and	
transparent	 data	 processing	 center	 is	 required	 to	 accommodate	 all	 FAIR	
experiments	and	users.	In	this	work,	we	describe	the	operational	approach	for	the	
computing	cluster	at	GSI/FAIR	that	is	characterized	by	an	exceptionally	minimal	
host	 system.	This	 is	 achieved	by	 installing	 and	 running	 all	 user	 applications	 in	
containers.	The	implementation	of	this	approach	on	a	production	system	hosting	
approximately	700	users,	80.000	CPUs	and	400	GPUs	demonstrates	its	feasibility	
and	 scalability.	 A	 transparent	 solution	 for	 interactive	 work	 in	 a	 containerized	
environment	that	addresses	different	 levels	of	user	experience	is	 introduced.	In	
addition,	users	have	the	opportunity	to	construct	and	submit	their	own	containers.	
The	paper	will	cover	also	how	usage	of	Spack	and	CVMFS	contributes	to	the	overall	
ef*iciency	and	adaptability	of	the	computing	cluster	at	GSI/FAIR.	

1.	Introduction		

The	Facility	for	Antiproton	and	Ion	Research	(FAIR),	currently	under	construction	adjacent	to	the	
GSI	Helmholtz	Centre	 for	Heavy	 Ion	Research	 in	Darmstadt,	Germany,	 represents	a	 signi*icant	
advancement	in	the	*ield	of	particle	and	nuclear	physics	[1].	FAIR's	research	agenda	spans	a	wide	
array	of	topics	within	Atomic	Physics,	Nuclear	Structure	and	Astrophysics,	Heavy	Ion	Collisions,	
and	Physics	with	Hadrons.	By	facilitating	experiments	at	the	cutting	edge	of	these	*ields,	FAIR	will	
provide	unique	insights	into	the	fundamental	forces	of	nature	and	the	structure	of	matter	under	
extreme	conditions.	

To	support	 the	diverse	experiments	and	the	complex	modern	detectors	required	 for	their	
studies,	 FAIR	 is	 developing	 an	 on-site	 data	 processing	 center.	 The	 massive	 amounts	 of	 data	
generated	by	FAIR’s	detectors	necessitate	a	robust	computing	infrastructure	capable	of	handling	
high	data	rates	and	performing	intricate	data	analysis	with	high	ef*iciency.	Given	the	diverse	and	
extensive	 user	 community	 at	 FAIR,	 the	 computing	 infrastructure	must	 be	 highly	 adaptable	 to	
various	software	tools	and	analysis	work*lows.	This	necessitates	a	scalable	HPC	cluster	that	can	
grow	with	the	increasing	demands	of	research	while	keeping	a	low	maintenance	overhead.	

Maintenance	has	been	a	critical	challenge	with	previous	generations	of	clusters	at	GSI.	The	
extensive	and	diverse	user	community	required	the	installation	of	over	4,000	software	packages	



on	 the	 host	 system,	making	 it	 virtually	 impossible	 to	 upgrade	 the	 cluster’s	 operating	 system	
without	 causing	 disruptive	 changes	 for	 users.	 Drawing	 on	 this	 experience,	 we	 opted	 for	 a	
containerized	cluster	design,	which	will	be	discussed	in	this	paper.	

2.	HPC	Cluster	for	FAIR		

2.1	Computing	resources	requirement	[2]	
Demand	on	the	compute	resources	for	an	experiment	is	mainly	driven	by	detector	setup,	beam	
taking	conditions	and	physics	of	interaction.	Compressed	Baryonic	Matter	(CBM)	experiment	will	
operate	at	high	beam	intensity	and	interaction	rate,	which	in	combination	with	highly	granular	
detector	and	trigger-less	readout	will	deliver	extremely	high	data	rates	on	the	order	of	1	TB/s	[3].	
In	order	to	be	able	to	store	data,	events	need	to	be	reconstructed	and	pre-selected		in	online	mode,	

during	data	taking.	In	this	way,	data	stream	will	be	reduced	to	few	tens	GB/s.	Hardware	resources	
needed	for	such	online	farm	can	be	taken	from	table	1.	

The	experiments	will	not	have	dedicated	hardware	but	will	share	the	cluster	dynamically.	
Required	amount	of	compute	nodes	will	be	reserved	for	the	time	of	a	corresponding	run.	The	fact	
that	not	all	experiments	are	carried	out	at	the	same	time	makes	this	approach	more	practicable	
and	help	saving	computing	costs	and	resources.	

2.2	Fully	containerized	approach	
In	order	to	cope	with	diversity	of	software	and	hardware	requirements	in	our	user’s	community,	
we	have	decoupled	user	space	from	host	space	and	introduced	fully	containerized	approach.	

According	 to	 this	 approach,	 Linux	 distribution	 on	 the	 host	 system	 is	 kept	 at	 minimum	
number	of	installed	packages	and	all	user	applications	are	executed	with	Apptainer	[4].	The	host	
OS	contains:	

• Resource	Management	System	(Slurm)	[5]	
• Container	engine	(Apptainer)	
• HW	drivers	(In*iniBand,	GPU)	
System	 is	 built	 such,	 that	 it	 supports	 submitting	 of	 user-de*ined	 containers.	 This	 offers	

another	degree	of	freedom	in	choosing	of	Linux	*lavour	as	well	as	software	installed.	It	makes	such	
a	cluster	highly	scalable	in	multiple	dimensions,	with	less	maintenance	effort.	

Table	1.	Number	of	cores	and	amount	of	disk	storage	which	are	required	by	four	scientiMic	pillars	of	
FAIR.	

	 NUSTAR	 CBM	 PANDA	 APPA	

Number	of	cores	for	
offline	analysis	

9	000	 45	000	 68	000	 11	000	

Number	of	cores	for	
online	event	
reconstruction	

7	000	 45	000	 34	000	 -	

Storage	(TB)	 34	250	 103	000	 60	680	 7	037	
In	addition,	around	400	GPUs	will	be	provided	



2.3	Virtual	Application	Environment	
Ready-to-be-used	Apptainer	image,	which	mounts	externally	maintained	software	stack	at	run-
time,	 is	called	Virtual	Application	Environment	(VAE).	 It	 is	provided	as	a	common	solution	for	
user	 application	 space.	 Users	 also	 have	 the	 opportunity	 to	 maintain	 and	 deploy	 their	 own	
container	images,	e.g.	for	specialized	GPU	applications.	

Usage	of	Spack	package	manager	for	building	and	installation	of	the	software	stack	for	VAE	
enables	support	of	following	features:	

• automatic	handling	of	dependencies,	
• multiple	package	versions,	
• multiple	micro-architectures,	tailored	to	the	cluster	hardware,	
• mixed	toolchains.	
CVMFS	[6]	is	used	for	distribution	to	the	worker	nodes.	Having	its	effective	caching	on	the	

client	side,	let	us	operate	the	cluster	in	a	very	effective	and	stable	way.	

3.	Advanced	features	

3.1	Login	into	container	[7]	
Default	 submitter	 nodes	 offer	 login	 to	 the	 host	 OS,	 where	 the	 users	 can	 develop	 their	 own	
containers	and	submit	jobs	to	the	cluster.	

Dedicated	submitter	nodes	offer	a	possibility	of	interactive	login	into	container	(VAE).	This	
feature	is	implemented	in	a	fully	transparent	way	and	allows	users	to	have	easy	access	to	a	large	
software	stack	on	the	cluster.	

3.2	Job	submission	from	container	[8]	
A	 job	 submitted	 to	worker	 nodes	 from	 a	 VAE	will	 be	 by	 default	 executed	 in	 the	 same	 virtual	
environment.	This	is	handled	internally	in	a	dedicated	plugin	of	the	Slurm	resource	manager.	An	
illustration	of	such	a	default	work*low	is	shown	in	*igure	1.	By	overwriting	speci*ic	environment	
variable	 in	 the	 shell	 of	 the	 submitter	 node,	 users	 can	 execute	 a	 task	 in	 a	 custom	 virtual	
environment.	

Figure	1.	Schematic	workMlow	of	a	job	being	submitted	from	within	a	VAE.	

	
	



4.	Summary	

We	conclude,	that	the	HPC	cluster	at	FAIR,	designed	and	built	based	on	fully	containerized	
concept,	is	ful*illing	the	requirements	for	online	and	of*line	data	analysis	of	experiments	at	FAIR	
accelerator.	 Support	 of	 user	 de*ined	 containers,	 usage	 of	 CVMFS	 shared	 *ile	 system	 and	 large	
software	stack,	leverage	the	scalability	of	FAIR	compute	cluster.	

References	
[1]	 FAIR	Home.	(n.d.).	https://fair-center.de/	
[2]	 Messchendorp,	J.	et.	al.	(2023).	Conceptual	Design	Report	for	FAIR	Computing.	[Manuscript	submitted	for	
publication.]	
[3]	 Senger,	P.	et.	al.	(2020).	Physica	Scripta	95	074003.	https://doi.org/10.1088/1402-4896/ab8c14/	
[4]	 Kurtzer,	G.	M.	et.	al.	(2018).	Zenodo.	https://doi.org/10.5281/zenodo.1308868/	
[5]	 Yoo,	A.	et.	al.	(2003).	Job	Scheduling	Strategies	for	Parallel	Processing,	volume	2862	of	Lecture	Notes	in	
Computer	Science,	pages	44-60,	Springer-Verlag	
[6]	 CernVM-FS	2.11.3	documentation.	(n.d.).	https://cvmfs.readthedocs.io/en/stable/	
[7]	 Containerize	OpenSSH	Client	Logins.	(n.d.).	https://github.com/vpenso/openssh-container-login/	
[8]	 Kretz,	M.	et.	al.	(2024).	Zenodo.	https://doi.org/10.5281/zenodo.11189831/	
		
	


