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Abstract. Track finding in particle data is a challenging pattern recognition problem in High
Energy Physics. It takes as inputs a point cloud of space points and labels them so that space
points created by the same particle have the same label. The list of space points with the same
label is a track candidate. We argue that this pattern recognition problem can be formulated as
a sorting problem of which the inputs are a list of space points sorted by their distances away
from the collision points and the outputs are the space points sorted by their labels. In this paper,
we propose the TRACKSORTER algorithm: a Transformer-based algorithm for pattern recognition
in particle data. TRACKSORTER uses a simple tokenization scheme to convert space points into
discrete tokens. It then uses the tokenized space points as inputs and sorts the input tokens
into track candidates. TRACKSORTER is a novel end-to-end track finding algorithm that leverages
Transformer-based models to solve pattern recognition problems. TRACKSORTER is evaluated on
the TrackML dataset and has good track performance.

1 Introduction
The High Luminosity Large Hadronic Collider (HL-LHC) plans to collide two proton beams at the unprece-
dented center of mass energy of 14 TeV at an instantaneous luminosity of up to 7.5 × 1034cm−2s−1. That
corresponds to an average number of proton-proton collisions per beam crossing (i.e. pileup), 〈µ〉, of up to
200. HL-LHC brings opportunities and challenges. To cope with the challenges, the ATLAS [1] and CMS [2]
experiments decided to build a new fully silicon-based inner tracker detector [3–5]. The new inner trackers
will have better raditation tolerance, increased granularity, reduced material, and large readout bandwith to
fulfill the requirement of the HL-LHC Runs. Take the ATLAS’s new innder detector, ITk, as an example. ITk
consists of a Pixel detector at a small radius and a large area Strip detector surrounding it. The Pixel detector
consists of about five billion finely segmented silicon sensors, most of which have a pitch of 50× 50µm2 and
the rest 25×100µm2. The Strip detector comprises 23,000 long and skinny silicon sensors (75.5µm×24.1 or
48.2 mm). Each event with 〈µ〉 = 200 produces about 300,000 space points, out of them only about 10,000
space points come from particles of interest. Finding the tracks of interests from a point cloud of space points
is a challenging pattern recognition problem.

Our work is inspired by the remarkable capabilities of Large Language Models (LLMs) such as BERT [6],
GPT [7], Llama [8], and grok-1 [9]. The foundation of our work is to convert space points into discrete token
ids (i.e. tokenization). Tokenization is a critical step in efficient learning and handling out-of-vocabulary
words for LLMs learning natural language. For example, one can use letters as tokens for the English lan-
guage. Doing so would result in a small vocabulary and can construct all out-of-vocabulary words. However,
it is inefficient for learning because semantic relationships among letters are lost during tokenization. Tok-
enizing a point cloud of measurements in High Energy Physics (HEP) presents a unique challenge: converting



variables from a continuous, multi-dimensional space into discrete spaces. Although some information from
the continuous space will inevitably be lost during tokenization, this loss may be acceptable as long as it does
not compromise the accuracy of the underlying physics. After all, all physics measurements inherently con-
tain some level of uncertainties. In the context of jet physics, the Omnijet framework [10] explored three
schemes for tokenizing jet constituents: physics-inspired binning of contitunents’ kinematic variables (binning
in short), conditional and unconditional tokenization via the vector-quantization variational autoencoder (i.e.
VQ-VAE) [11] technique, which is also used in Ref [12] to build the codebook index. The binning scheme ad-
justs the bin width to match measurement uncertainties and the study shows a small bias in the reconstructed
jet mass and poor resolution (Fig. 4 in Ref. [12]). The VQ-VAE schemes enjoy better performances with
a larger number of tokens. In our previous research [13] on particle tracking data, we utilized the unique
detector module IDs as the token identifiers for space points created on that detector module. While this
tokenization process results in the loss of precise positional and other details of the space points, it enables
us to directly train LLMs with the tracking data.

We argue that the track finding problem can be formulated as a sequence-to-sequence (seq2seq) problem,
illustrated in Fig. 1. The input sequence is a list of space points ordered by their distances away from the
collision point. And the output sequence is a list of the same space points ordered by their labels and their
distances away from the collision point. Language models like Bart [14] are very good at solving seq2seq
problems like machine translation, text summary, and question-answering. The Bart model consists of a
bidirectional encoder (like BERT) and a left-to-right decoder (like GPT). A similar model is used in our work.

1 2 4 5
TrackSorter

7 1 2 5 7

Sorted by r

4SEP SEP

Sorted by track label

Track 1 Track 2

Figure 1: Illustration of the TRACKSORTER algorithm. Each box represents a space point, with the token ID
inside. [SEP] is a special token indicating the end of a track. r is the distance between the space point and
the collision point in the transverse plan.

2 Data
This study is based on the TrackML dataset [15], which simulates the top quark pair production from proton-
proton collisions at the HL-LHC. To simulate the effect of event pileup and produce realistic detector occu-
pancy, a Poisson random number (with µ = 200) of Quantum Chromodynamics "minimum bias" events are
overlaid on top of the t t̄ collisions. The TrackML detector is a set of concentric cylindrical layers of pixelated
sensors (the barrel) complemented by a set of circular disks (the endcaps) to ensure nearly 4π coverage in
solid angle, as pictured in Fig. 2.

The detector is divided into nine volumes, each consisting of 2 to 7 layers. Each layer contains multiple
silicon modules. There are 18,737 detector modules in the TrackML dataset. We use data from volume 8,
13, and 17, summing up to 14,000 modules. We introduce two custom tokens to indicate the start of the
output sequence [SOS] and the end of each track [SEP]. Therefore, as detector module IDs are treated as
token identifiers, the vocabulary size in our work is the sum of the number of detector modules and the two
special tokens; that’s 14,002.

Our study utilizes particles that have space points from at least 6 unique layers. Our training dataset uses
tracks from 100 events that meet this condition, totaling 349k tracks. The validation dataset is similarly con-
structed from 10 events (35k tracks). A testing dataset for performance analysis is curated with an additional
condition that each track has an average pT < 5 GeV, containing 67k tracks.

In natural language processing workflows, discrete tokens are first embedded into a continuous, dense
vector representation, i.e. Word2Vec [16, 17]. We used the continuous bag of words framework [16] to train
a Word2Vec model by asking the model to predict a target word using all the words in a context window. To



Figure 2: The detector schematic shows the top half of the detector projected on the r-z plane. The z-axis is
along the beam direction.

train the model, we randomly pair each track with another track and construct a target sentence following
the ordering scheme shown in Fig. 1 for each track pair. In total, our training data contains 349k sentences
and 8M tokens. The “Generate Similar‘ (Gensim) library [18] is utilized for training. To achieve a reasonable
embedding performance, the model uses an embedding dimension of 64, a context window of 20 tokens,
and is trained for 100 epochs. In the future, we can use the TrackingBERT [13] method to embed detector
modules.

3 Model and Training
The model utilizes the encoder-decoder structure of transformers [19]. Both encoder and decoder networks
are composed of a stack of identical transformer modules, each having a single-head self-attention mechanism
and a position-wise fully connected feed-forward network. We only use a single attention head because our
embedding dimension is 64, which is relatively small. And the feed forward layers have a dimension of 256.
The output of the decoder network is fed into a linear layer that spans the dimension of the vocabulary. Our
model contains six bi-directional encoder layers followed by six left-to-right decoder layers, totaling 1.6M
trainable parameters. We inject positional encoding into the input sequence to provide information on the
order of the detector modules.

The model is trained to autoregressively predict the correct sequence of tokens for 371 epochs using the
Adam optimizer [20] in conjunction with the CosineAnnealingLR scheduler. Model weights corresponding to
the lowest validation loss were saved.

4 Results and Discussions
During model inference, we utilize the greedy search algorithm to construct model predictions: given an input
sequence, a count mask is created to store the number of instances of each token in the input sequence. The
count value for the [SOS] and [SEP] tokens are set to 0 and 100, respectively. The model is first fed with the
[SOS] token and predicts the next token by calculating logits for each token in the vocabulary. The logits of
tokens that have a value of zero in the count mask are set to zero. The token with the highest model logit is
considered as the next token; thus, it is appended to the output sequence. Its corresponding count value is
decremented by one so that it would not appear again in the output sequence. The updated output sequence
is then fed back to the model for the next token prediction. In the case that the greedy algorithm predicts
the [SEP] token, the model logit of the [SEP] token will be set to zero in the next step. This is to prevent the
algorithm from predicting the [SEP] token in consecutive steps. Note that after predicting the [SEP] token,
the model will decide what the next token will be. That means the model may predict track candidates in
an arbitrary order. Such predictions are repeated until all input tokens are in the output sequence and the



last predicted token is the [SEP] token. This termination condition is not ideal when noise space points 1 are
presented as in real data.

The model performance is evaluated by the tracking reconstruction efficiency, defined as the fraction of
particles that are matched to at least one reconstructed track. Reconstructed track candidates are matched
to particles if (1) 75% of module hits in the reconstructed track are in the true particle track and (2) 75% of
module hits in the true particle track are in the reconstructed track. To assess our model, each track in our
testing dataset was randomly paired with another track before being passed to the model. Fig. 3 shows the
model’s performance with respect to track length and track pT. The model performance is fairly stable against
the track length, indicating the model can catch long-distance information. We note that tracking efficiency
as a function of pT resembles the distribution of particle pT in our testing dataset, see figures on the top panel
in Fig. 3. This suggests that an uniform sampling of particle pT during training may make model performant
in all pT regions.
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Figure 3: Top row: distribution of track length (left) and track pT (right) in the test dataset. Bottom row:
Tracking efficiency as a function of the track length (left) and particle transverse momentum (right).

We observed that a larger model size leads to better performance. We expect a larger dataset size to be
beneficial to improve model performance. In our training dataset, we find several tokens represented in only

1Noise space points are those created either from electronic noises or low-pT particles (i.e. pT < 200 MeV).



a handful of samples. This adversely affects Word2Vec training of our initial embedding vectors as well as
training of the model itself.

In smaller scale experiments focusing on the inner barrel detector region, we came up with physics-inspired
embedding vectors for detector modules, such as the global coordinates, rotation matrix and pitch compo-
nents, and geometric features of each detector module. The model performance resulting from this embedding
scheme does not perform well compared to the more traditional Word2Vec implementation.

The model works fairly well with two tracks per input. but it remains to be studied whether the TRACK-
SORTER can scale effectively in a dense environment like the HL-LHC, where each event contains 10k particles
resulting in 100k detector hits. This would form the event-level context window for the language model. This
large context window may not pose a problem, as the leading LLM models already have substantial capac-
ities. For instance, GPT-4O supports a 128k context window [21], CLAUDE 3 SONNET extends up to 200k
tokens [22], and the GEMINI-1.5 model can handle up to 1 million tokens in production [23].

5 Conclusions
We reformulated the particle tracking problem as a sequence to sequence problem and proposed a Tranformer-
based track sorting algorithm to address it. This algorithm achieves good tracking reconstruction efficiency,
even for low-pT particles (pT < 1 GeV). Our work leverages a language model-style architecture to tackle
high-energy problems. Our study trained the language model from scratch. It remains to be studied open
large language models can be fine-tuned for HEP problem-solving.

Data and Software availability
Data can be found at Kaggle 2 and code is avaible at Github 3.
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