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Abstract.

The Jiangmen Underground Neutrino Observatory (JUNO) is a next-generation large
(20 kton) liquid-scintillator neutrino detector, which is designed to determine the neu-
trino mass ordering from its precise reactor neutrino spectrum measurement. Moreover,
high-energy (GeV-level) atmospheric neutrino measurements could also improve its sen-
sitivity to mass ordering via matter effects on oscillations, which depend on the capability
to identify electron (anti-)neutrinos and muon (anti-)neutrinos against each other and
against neutral current background, as well as to identify neutrinos against antineutri-
nos. However, this particle identification task is difficult in large unsegmented liquid
scintillator detectors like JUNO. This paper presents a machine learning approach for
the particle identification of atmospheric neutrinos in JUNO. In this method, several
features relevant to event topology are extracted from PMT waveforms and used as in-
puts to the machine learning models. Moreover, the features from captured neutrons
could also provide the capability of neutrinos versus anti-neutrinos identification. Two
independent strategies are developed to utilize neutron information and to combine these
two types of inputs information in different machine learning models. Preliminary results
based on Monte Carlo simulations show the potential of this approach.

1 Introduction
Neutrinos have always been one of the hot topics in the field of particle physics, and the neutrino mass
ordering (NMO) has been a particularly compelling problem for many physicists. For the three mass
eigenstates of neutrinos, the sign of |∆m2

32| is still unknown, leaving us two possibilities: normal ordering
(NO, m1 < m2 < m3) or inverted ordering (IO, m3 < m1 < m2).

The Jiangmen Underground Neutrino Observatory (JUNO) [1, 2] is a multipurpose neutrino ex-
periment designed with the main physic goal of determining NMO, using a large homogeneous liquid
scintillator (LS) detector to observe the oscillations of reactor electron antineutrino (ν̄e) from nearby
nuclear power plants. The design of JUNO’s central detector is illustrated in figure 1.

Beside of reactor neutrinos, JUNO can obtain additional sensitivity to NMO by precisely measuring
the matter effects in oscillations of atmospheric neutrinos. JUNO’s final NMO sensitivity will be obtained
through a joint analysis of both reactor and atmospheric neutrino oscillations. Figure 2 show the dif-
ferences in oscillation probabilities for each atmospheric neutrino flavor, namely electron (anti)neutrinos
(νe/ν̄e) and muon (anti-)neutrino (νµ/ν̄µ). From the figure, it can be seen that the oscillation proba-
bilities of atmospheric neutrinos is closely related to their energy, directionality, and the neutrino type
(referred to as ”flavor”). Therefore the particle identification for atmospheric neutrinos is essential in



JUNO, which comprises of two major parts: The first part is distinguishing between νe/ν̄e and νµ/ν̄µ
in Charged-Current (CC) interactions, as well as distinguishing them from background Neutral-Current
(NC) interactions that do not provide any NMO sensitivity; The second part is the discrimination between
neutrinos and antineutrinos in CC interactions, which is crucial because the matter effect on oscillation
probability is opposite for neutrinos and antineutrinos.

In a recent work [3], we presented a new method of reconstructing directionality of atmospheric
neutrinos in a large homogeneous LS detector. Our approach involved training several machine learning
(ML) models to determine neutrino direction, utilising features extracted from the photomultiplier tube
(PMT) waveforms to reflect the event topology. In this paper, we focus on the particle identification
in a large homogeneous LS detector such as JUNO for atmospheric neutrinos, using a similar ML-based
methodology. We leverage the input features derived from the PMT waveforms, but we also incorporate
additional information from neutron capture signals to aid the flavor classification task.

Figure 1: The JUNO detector. Figure 2: Differences in oscillation probabilities be-
tween the two neutrino mass order (NO & IO).

2 Methodology
As detailed in the previous method on reconstructing directionality of atmospheric neutrinos [3], the light
received by a PMT is the superposition of light from various points on particle tracks in the detector.
The number of photo-electrons (PEs) seen by a PMT as a function of time is determined by the event
topology. Therefore PMT waveforms would contain all the information about the characteristics of a
given event such as energy, direction, particle type that are relevant for physics analyses. In practice,
however, it can be very difficult to identify flavors directly from waveforms, given the complex relationship
between the two and considering the large number of PMTs involved. Therefore instead of using the full
waveforms, key features are extracted from waveforms to represent the entire shape of waveforms, and a
sophisticated set of features are used for this study, including total charge (nPE), first hit time (FHT),
the slope of the reconstructed waveform in the first 4 ns after first hit time, and so on.

For the 3-label identification, which is the identification of three types of atmospheric neutrino events:
νµ/ν̄µ-CC, νe/ν̄e-CC, and NC, The key difference is from the charged lepton produced by the primary
interaction. For a νµ/ν̄µ-CC event, the muon generated by the primary interaction rapidly deposits its
energy and exhibits a long and straight track in the LS; For a νe/ν̄e-CC event, the event topology in LS
resembles that of νµ/ν̄µ-CC, except that the electron from primary interaction instead creates a shower
through processes like bremsstrahlung. As for an NC event, no charged lepton is produced by the primary
interaction and the outgoing neutrino is invisible, leaving only the hadron part in the LS. The different
event topologies for electron showers and muon tracks in the LS lead to different time distributions of
PEs seen by PMTs at various angles, as shown in figure 3.

Therefore, for 3-label identification, the methodology is simply extracting the features from the pri-
mary trigger time window which reflect the topology of charged leptons produced by the primary inter-
action, and use them as inputs to the ML models. As for ν/ν̄ identification, it is a rather challenging
task in a large homogeneous LS detector without a magnetic field, given that LS detectors have neither
Cerenkov rings nor tracks. However, additional information beyond features from primary trigger can
help us in this work. Because of the V-A structure of ν/ν̄ interactions, ν-CC events would have statis-
tically larger hadronic energy fraction than ν̄-CC, which means that more secondary neutrons will be
produced from hadrons for ν-CC events. On the other hand, as the neutrino energy increases, ν̄-CC
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Figure 3: The time distributions of PEs for PMTs at different angles in an electron (left) and a muon
(right) event, with the same kinetic energy and vertex position. This reflects the difference in event
topology for the two type of events.

would tend to produce more neutrons in primary interactions than ν-CC. For the overall topology of final
state neutrons, the distinction between ν and ν̄ arises from these two factors, which dominate in different
neutrino energy ranges. Moreover, these final state neutrons can be selected with a high-efficiency cut on
energy and time after primary trigger in a LS detector. As a result, the information from the captured
neutrons, such as neutron multiplicity and their spatial distribution, is able to provide extra capability
in the ν and ν̄ discrimination task.

Figure 4 shows the schematic workflow in this study, containing the two steps detailed earlier: the
3-label classification and the ν/ν̄ discrimination. For each of the three identification tasks shown in the
figure, an individual ML model is trained only for this task. This approach allows each model to focus on
a specific classification task with different input features. In addition, we have independently developed
two strategies in utilising all the information described above to perform the flavor-identification tasks.

Figure 4: The schematic workflow of atmospheric neutrino particle identification.

2.1 Strategy 1
In this strategy, we are selecting neutron candidates by applying a time window ranging from 10 µs to
1 ms after the prompt signal , with an energy range of 2 MeV to 2.7 MeV. The vertices of these neutron
capture candidates are reconstructed using the method from Ref. [4].

The overall architecture of the model for strategy 1 is shown in figure 5. The input PMT features
extracted from the waveforms are transformed into a point cloud, with each feature sequentially added
after the 3-dimensional (x,y,z) coordinates of the PMTs. The input is fed into a point cloud-based model
PointNet++ [5]. For the captured neutrons, the only useful information to reflect event topology is their
reconstructed vertices, therefore the point cloud for neutrons only contains the absolute positions in the



detector. By adopting this data format, the loss of information is minimized, ensuring that not only the
quantity of neutrons but also their spatial distribution is retained.

Because the point cloud of neutron is much sparser than the one of PMTs, PointNet++ is too complex
for neutrons and does not perform well. Furthermore, if both point clouds are inputted into the model
together, the neutron information will be ignored by the model due to the overwhelming difference in
quantity. Therefore a separate DGCNN-based model [6] with more capability to handle sparse point
clouds is applied, in order to extract features from the reconstructed neutron information. The two
parts of inputs are fed into the PointNet++-based model and the DGCNN-based model, and finally
concatenated at the fully-connected Layer. The outline of the strategy is shown on figure 6.

Figure 5: Schematic diagram of PointNet++/DGCNN model architecture used for strategy 1.

Figure 6: Outline of strategy 1.

2.2 Strategy 2
In this strategy, the multiple neutron candidate triggers are merged into one, and the features for neutron,
namely nPE and FHT, are extracted from PMT waveforms just like the primary trigger. This treatment
for neutrons ensures the uniformity of the input format, and enables the machine learning model to
process the input data more efficiently. The architecture of the model for this strategy is illustrated in
figure 7.

The DeepSphere model [7] is used in this strategy, which processes the PMT features by treating
them as spherical images, since the PMTs are originally distributed on the surface of the detector sphere.
This approach maintains rotation covariance and avoids distortions caused by projecting the data onto a
planar surface. The outline of the strategy is shown on figure 8.

3 Performance
Two neutrino samples with different neutrino spectra are used in this work: one with a flat neutrino
energy spectrum to mitigate the influence of neutrino energy dependence to the model, and the other one
has flux calculated from Honda et al. [8] which could reflect the real atmospheric neutrino distribution.
For the purpose of training and testing the ML models, a sub-sample is selected from the flat sample for
testing; on the other hand, the full Honda sample is not used for training and is used solely for testing
purposes.



Figure 7: Schematic diagram of DeepSphere model architecture used for strategy 2.

Figure 8: Outline of strategy 2.

(a) 3-label Flat sample (b) νµ /ν̄µ Flat sample (c) νe /ν̄e Flat sample

(d) 3-label Honda flux sample (e) νµ /ν̄µ Honda flux sample (f) νe /ν̄e Honda flux sample

Figure 9: Comparison of AUC scores as a function of visible energy for 3-label classification (9a and 9d),
νµ /ν̄µ (9b and 9e) and νe /ν̄e (9c and 9f). The large error bars at higher energies of the Honda flux
sample are due to the small statistics in this region.

The actual output of the ML models for classification task is not just the predicted label for each event,
but a vector of scores represents the possibility for each predicted label. By adjusting the thresholds on
those scores, The efficiency and purity for each label can be optimised therefore could not fully reflect
the model’s capability of classification. Therefore, the Area Under the Receiver operating characteristic
(ROC) Curve (AUC) is used to evaluate the classification performances, as it is independent of the score
cut selection and is not affected by class imbalances in the data as well.

Figure 9 shows a comparison of the ROC AUC scores for the two strategies for all atmospheric neutrino



events with the energy range of 0.5 to 20 GeV for both the flat sample and Honda flux sample. The results
indicate that the two strategies are consistent with each other. Figure 10 shows the true composition
for each of the four CC categories as functions of L/E in Honda flux sample, which will be used as the
inputs for NMO sensitivity study. In this upcoming NMO study, the efficiency and purity of each label
will be tuned to obtain the best sensitivity.

Figure 10: L/E plots for each CC category.

4 Summary
In this paper, we presented a general machine learning approach of atmospheric neutrino particle iden-
tification, using the features extracted from the PMT waveforms in the primary trigger as well as the
information of the captured neutron candidates. Two individual particle-identification strategies with
different types of machine learning models were developed to cross validate the methods. The two strate-
gies show consistent performances, and will be both applied in JUNO’s future NMO sensitivity analyses
for cross check. Preliminary results using Monte Carlo simulations demonstrate the great potential of
this approach, as well as JUNO’s capability for atmospheric neutrino oscillation measurements.
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