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Abstract. The Jiangmen Underground Neutrino Observatory (JUNO), located in Southern
China, is a multi-purpose neutrino experiment that consists of a 20-kton liquid scintillator
detector. The primary goal of the experiment is to determine the neutrino mass ordering
(NMO) and measure other neutrino oscillation parameters to sub-percent precision. Atmo-
spheric neutrinos are sensitive to NMO via matter effects and can improve JUNO’s overall
sensitivity in a joint analysis with reactor neutrinos; Atmospheric muons contribute to one of
the most important background sources to neutrino signals. Good capability of reconstructing
atmospheric neutrinos and muons in JUNO is crucial for its physics goal.

In this contribution, we present a novel multi-purpose reconstruction method for atmospheric
neutrinos, muons and other physics events at similar energies (few GeV to tens of GeV)
by combining PMT waveform analysis and machine learning techniques. Multiple machine
learning approaches, including planer, spherical, and 3-dimensional models, as well as other
novel techniques in improving reconstruction precision, are discussed and compared. We
show the performance of reconstructing atmospheric neutrino’s directionality and energy us-
ing Monte-Carlo simulations, and demonstrate that this method can achieve unprecedented
reconstruction precision for multiple physics quantities and fulfils the needs of JUNO. This
method also has the potential to be applied to other liquid scintillator detectors.

1 Introduction
JUNO is a multi-purpose neutrino experiment located in the Guangdong province of China. The JUNO
central detector (CD) consists of 20-kton liquid scintillator (LS). The main physics goal is to determine
the neutrino mass ordering (NMO) by measuring reactor neutrinos from nearby nuclear power plants.
The sensitivity of NMO can be enhanced by measuring atmospheric neutrino oscillations. Information of
neutrinos’ energy and directionality is essential to oscillation analyses since the oscillation probabilities
are dependent on energy and distance travelled. However, reconstructing atmospheric neutrino events in
LS are challenging, since traditional LS detectors do not offer direct track information. Moreover, the
Cherenkov light is about two orders of magnitude weaker than scintillation light, making it very difficult
to be utilised for reconstruction.



Figure 1: (Left) Illustration of the scintillation light (orange dashed lines) from a charged particle track
(black solid line) reaching a PMT. (Right) An example of a PMT waveform together with a set of defined
features.

2 Methodology
The light seen by PMTs in the JUNO CD is a superposition of light from many points on the particle
tracks in the detector. Fig. 1 (left) shows an illustration of scintillation light from a charged particle
track seen by one PMT. The number of photo-electrons (PEs) seen by a PMT as a function of time is
determined by event topology, which are reflected in the PMT waveforms. Therefore, PMT waveforms
would contain all the physical quantities relevant for physics analyses such as energy, direction, and
particle type. In principle, PMT waveforms can be used as input to reconstruction algorithms directly.
However, this is very computationally expensive given the large amount of PMTs present in the CD.
Therefore, in order to simplify the task, we first extract features from the waveforms that can be used as
input to ML models. These include:

• Total charge (nPE), which is calculated by integrating the charge over the entire readout time
window;

• First hit time (FHT), which is calculated by using a constant fraction discriminator method with
a threshold of 20%

• Slope, which describes the average slope of the deconvoluted waveform in the first 4 ns after the
first hit time

• Charge ratio, which is defined as the ratio of charge in the first 4 ns after FHT to the total charge

Fig. 1 (right) shows an example of a waveform from one of the PMTs and the extracted features. Feature
importance studies are performed to select final set of features that are used for the ML models.

3 Machine Learning Models
Convolutional Neural Network (CNN) [1] is a deep learning algorithm that is very powerful for analysing
visual data, and has been used widely in particle physics experiments. Features extracted from PMTs in
JUNO CD form image-like data, which is well-suited for CNN models.

Different approaches have been developed and performances are compared. The first approach involves
projecting the spherical data onto a planar surface, allowing the use of various state-of-the-art machine
learning models, such as EfficientNetV2 [2]. The second approach utilizes a model based on DeepShere [3],
a graph convolutional neural network (GCNN) specifically designed to process spherical data. Lastly, a
3D model based on PointNet++ [4] is employed, which processes the PMT data as a 3D point cloud.
The details of these three approaches are discussed in the following subsections.

3.1 Planar Model: EfficientNetV2
In JUNO CD, every single PMT can be considered as a pixel, and for each waveform feature the combi-
nation of all PMTs forms a spherical image-like signal. Inspired by ImageNet classification competition,
the spherical signal is projected onto a planar representation, and then the direction of the incident
neutrino is reconstructed with the state-of-the-art CNN model, EfficientNetV2 [2]. It is known for its



superior performance and shorter training time compared to traditional CNNs. For this study, we used
the EfficientNetV2-S version in PyTorch implementation.

To integrate this planar model, the PMTs are projected onto a two-dimensional θ− ϕ grid. The grid
size of 128 × 224 is chosen to ensure each grid cell corresponds to at most one PMT. All the extracted
PMT features are filled into the θ − ϕ grids, which are then stacked together and fed into the model.
Fig. 2 shows an illustration of the EfficientNetV2-S model architecture.

Figure 2: Illustration of the EfficientNetV2-S model architecture. [2]

3.2 Spherical CNN: DeepSphere
DeepShere is a graph convolutional neural network (GCNN) model originally developed for cosmology
studies to deal with data distributed on a sphere [28]. One of the major advantages DeepShere provides
is that it avoids projecting the data onto a planar surface and maintains rotation covariance, meaning
that a rotation of the input variables causes the same rotation of the predicted value.

The main idea behind DeepShere is to model the spherical data as a graph of connected pixels, and
perform graph convolution based on spectral graph theory. To adapt to DeepShere, the spherical surface
formed by the PMTs is pixelised using the HEALPix scheme [5], which divides the surface into 12×N2

equal-sized pixels. In this study, Nside = 32 is used, resulting in a total of 12,288 pixels, which is less
than the total number of PMTs. Since for some pixels they cover more than one PMT, the total charge
is calculated as the sum of all PMTs within that pixel, while the first hit time (FHT) is taken to be the
earliest. The other features are calculated by simply averaging the values of the PMTs. Each pixel is
then represented as a graph vertex before being fed into the model. Fig. 3 shows the architecture of the
model developed based on DeepSphere.

Figure 3: Illustration of the DeepSphere model architecture.



3.3 3D point-cloud: PointNet++
Each PMT within the JUNO CD can be regarded as an individual discrete point. After the PMT
waveform feature extraction, each event can be represented by a 3D point-cloud data, where each point
contains the information of the three coordinates and the extracted features of one PMT. This allows the
data to be directly fed into 3D point cloud-based machine learning models.

As shown in Fig. 4, the PointNet++ architecture is designed to recursively sub-sample a small neigh-
borhood from the whole point cloud, group the neighborhood into larger units, and then extract local
features with a mini-PointNet. This approach allows PointNet++ to capture fine-grained local features
in addition to learning global ones.

Figure 4: Illustration of the PointNet++ model architecture.

4 Performances
The data sample used to evaluate the performances consists of 135,000 νµ /νµ and 57,000 νe /νe CC
events, of those 80% of the sample are used for training and the rest for testing. The performances are
evaluated using the testing sample only.

4.1 Directional reconstruction
The performances of directional reconstruction are evaluated with two parameters: the opening angle
α between the true and reconstructed neutrino directions, and the difference between the true and
reconstructed zenith angle of the incoming neutrino (θν). Fig. 5 shows the θν resolutions as a function of
Eν for νµ /νµ -CC (left) and νe /νe -CC (right) events for the three models considered. The resolution
improves as Eν increase. The νµ /νµ -CC events in general have better resolution because of the track-like
topology they exhibit inside the detector. For details about our method and results, please refer to our
paper published on PRD [6].

Figure 5: θν resolutions are shown as a function of Eν for νµ /νµ -CC (left) and νe /νe -CC (right)
events for the three models considered.

4.2 Energy and vertex reconstruction
We can simply modify the final output of the ML models to get other reconstructed quantities such
as neutrino energy and interaction vertices. Fig. 6 shows the resolutions for Evis (left) and Eν (right).



This demonstrates that this method are capable of reconstructing Eν directly. Unlike Water Cherenkov
detectors which rely on reconstructing leptons to infer Evis/direction, for LS detectors, the scintillation
light from both leptons and hadrons are visible and therefore can be used to directly reconstructing true
neutrinos’ properties. We can also achieve good vertex resolution using this method, with ∼20 cm for
νµ /νµ -CC events and ∼30 cm for νe /νe -CC events.

Figure 6: Resolutions for Evis (left) and Eν (right) based on the spherical and planar models.

5 Reconstruction of cosmic muons
Cosmic muons can propagate through the JUNO CD and interact, producing isotopes which are the
dominant background of the Inverse Beta Decay (IBD) signal in JUNO. Therefore, accurately identifying
such events is key to JUNO physics analyses. We attempted to utilise the ML method describe above
in reconstructing muon events. In particular we focus on reconstructing through-going muons and muon
showers using the DeepSphere model.

5.1 Muon tracks
In the attempt of reconstructing muon tracks, a data sample of ∼93 through-going muons are produced
and four features are extracted (FHT, nPE, nPE ratio, Slope) as inputs to the DeepSphere model. An
illustration of such events is shown on fig. 7 (left). The variables of interest are the incident/exiting point
of the track (A1 and A2 respectively), and also the angle between the true and reconstructed track α,
which is the quantity used to evaluate the directional reconstruction performance. The resolution of α
is defined as the 68% quantile from the α distribution. The resolution of α as a function of the distance
from detector center (r) is shown on fig. 7 (right). The resolution is slightly worse at small r due to
the lack of events as r approaches zero. The resolution are significantly worse as we move away from
the detector center since the track lengths become increasingly short as r increase, making such events
harder to reconstruct.

Figure 7: (Left) Illustration of a through-going muon event. (Right) The resolution of α as a function of
the distance from detector center (r).



5.2 Muon showers
As muons propagate through the CD, they can produce isotopes such as 8He and 9Li along the track
which can decay and mimic the IBD signal. In order to reconstruct these events, as well as reconstructing
the start/end and centre of showers, we also need to reconstruct the energy deposition (Edep) of muon
showers as well as dE/dx of muon tracks to fully reconstruct the whole event. We focus on the Edep of
showers since we can reconstruct the muon’s track well and we already know the MIP of a muon in LS,
which is around 2 MeV/cm. Fig. 8 shows the reconstruction performance of muon showers. The results
indicate that this reconstruction method has a great potential on reconstructing such events, with the
predicted range close to the true range of the shower contribution. The bias seen from the difference
between true and reconstructed Edep is possibly due to interference from the actual dE/dx of muon tracks.

Figure 8: (Left) Comparison between true and reconstructed Edep of a muon shower event. (Right)
Difference between true and reconstructed Edep.

6 Summary
This study presents a novel multi-purpose reconstruction method for atmospheric neutrinos, muons, and
other physics events at similar energies using PMT waveform analysis combined with machine learn-
ing techniques. The proposed method enhances JUNO’s ability to determine neutrino mass ordering
(NMO) and measure other neutrino oscillation parameters by accurately reconstructing event energy and
directionality. Three machine learning models—planar (EfficientNetV2), spherical (DeepSphere), and
3D (PointNet++)—are compared for their performance in reconstructing these events. With multiple
performance evaluations using Monte Carlo simulations, the study achieves high precision in gauging var-
ious parameters like neutrino directionality, energy, and cosmic muons. The results demonstrate the ML
method’s capability to achieve unprecedented reconstruction precision and suggest that these techniques
could be applied to other liquid scintillator detectors.
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