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Abstract. Graph Neural Networks (GNNs) have demonstrated significant performance in
addressing the particle track-finding problem in High-Energy Physics (HEP). Traditional
algorithms exhibit high computational complexity in this domain as the number of particles
increases. This paper addresses the challenges of training GNN models on large and rapidly
evolving datasets, a common scenario given the advances in data generation, collection, and
increasing storage capabilities. The computational and GPU memory requirements present
significant roadblocks in efficiently training GNNs on large graph structures. One effective
strategy to reduce training time is distributed data parallelism on multi-GPUs, which involves
averaging gradients across the devices used for training. This paper presents the results of
GNN training when using distributed data parallelism with an increased number of GPUs.
Training scalability is analyzed via training time, speed up, parallel efficiency, GPU and memory
utilization. Using weak scaling for GNN training with distributed data parallelism leads to an
increase in the physics performance. We are investigating the relationship between the number
of devices and the accuracy of the resulting models. Preliminary results on the TrackML dataset
are reported. GPU nodes from Perlmutter at NERSC are used to run the experiments.

1. Introduction
While deep learning offers numerous advantages and has achieved remarkable success in many
domains, including High Energy Physics (HEP) [1], it is essential to note that it does not
encompass a simple solution to all problems. Some challenges, such as interpretability,
overfitting, and the large amounts of labeled data required, still exist. As HEP experiments
continue to evolve, the generation and collection of data have surged, leading to increasingly large
datasets that demand sophisticated processing techniques. This paper addresses the challenges
associated with training GNN models [2] on such extensive and dynamically growing datasets,
particularly highlighting the computational and GPU memory constraints that hinder efficient
training on large graph structures.

Training performant GNN models for track reconstruction [3–5] may take days to weeks
to complete. Speeding up this training is crucial for iterative development, experimentation,
and finding the best hyperparameters. Hardware accelerators such as Graphics Processing
Units (GPUs), Tensor Processing Units (TPUs), and Intelligence Processing Units (IPUs) are
specifically designed for the massive parallelism required by deep learning operations. Training
using these hardware accelerators can be significantly faster than using CPUs. Distributing the
training process across multiple GPUs and even multiple computing nodes provides a way to



train large models faster for both machine [6] and deep learning [7]. Frameworks like TensorFlow
and PyTorch support such distributed training [8], allowing for the exploitation of large-scale
computing systems, which is crucial for the iterative development and experimentation needed
to optimize hyperparameters and achieve optimal model performance.

2. Distributed Data Parallelism (DDP)
Distributed Data Parallel (DDP) [9] deep learning training is the process used to train deep
learning models on multiple devices or nodes. As datasets grow, it becomes increasingly
challenging to fit them into the memory of a single machine [10]. This problem is further
intensified when training GNN models for track reconstruction, primarily due to the irregular
sizes of input graph samples. Distributing the dataset across multiple devices allows for parallel
processing and, at the same time, allows for handling much larger datasets.

The training time can be significantly reduced by distributing the training process across
multiple GPUs or devices. For example, one of the most popular foundation models, the
OpenAI’s GPT-4 model [11], was trained for 100 days on around 25,000 Nvidia A100 GPUs.
In the case of the DDP approach, each device receives a subset of the dataset, computes the
gradients, as shown in Figure 1, and then the gradients are aggregated and averaged to update
the global model at each iteration.

Figure 1. Each process performs a full backward pass in parallel.

This DDP approach allows for efficient parallelization of data across multiple GPUs,
facilitating faster training times and improved resource utilization. The choice of DDP was
driven by its robust performance in maintaining model accuracy and its ability to handle large-
scale datasets effectively. With the help of the PyTorch Lightning framework, implementing
DDP has enabled us to distribute the training workload evenly across available GPUs, thereby
accelerating the training process and ensuring consistency in model updates.

In general, scaling methods can be divided into two types: weak and strong scaling. Weak
scaling involves increasing the training dataset size proportionally with the number of GPUs,
which theoretically should maintain constant training time. We also observe that as the number
of GPUs increases, the convergence of training increases due to the corresponding increase in
the global batch size. Scaling the learning rate with the batch size is recommended in order to
help maintain convergence rates and ensure that the model continues to learn effectively despite
the larger batch sizes.



By distributing the model and data across multiple devices, you can train models that would
not fit into the memory of a single GPU. Some research suggests that training models in a
distributed manner, especially with asynchronous updates, can introduce a form of implicit
regularization, potentially leading to better generalization of the test dataset.

As more computational power is needed, more nodes can be added to the training cluster.
Cloud providers offer a variety of GPU instances. Distributed training allows for flexibility
in choosing a combination of instances that might be more cost-effective than using a single
powerful and more expensive instance. Distributed training can run multiple experiments in
parallel, allowing researchers to explore more hyperparameter settings or model architectures in
a shorter time.

Distributed data parallel deep learning training is essential for handling modern deep learning
tasks’ increasing complexity and size. It offers a way to efficiently utilize resources, speed up
training, and handle more extensive datasets and models.

The main steps to run DDP are:

(i) Each GPU across each node gets its own process.

(ii) Each GPU gets visibility into a subset of the overall dataset. It will only ever see and train
on that subset.

(iii) Each process initializes a copy of the model.

(iv) Each process performs a full forward and backward pass in parallel as shown in Figure 1.

(v) The gradients are synchronized and averaged across all processes by performing a collective
all-reduce operation.

3. Dataset
This work uses the TrackML dataset [12] for development and performance evaluation. The
open-access TrackML dataset, containing simulated events from a proton collider tracking
detector, was designed to develop algorithms to reconstruct particle trajectories in HEP
experiments. This dataset enables researchers to utilize realistic datasets to build their models,
enhancing the relevance and applicability of their findings to practical scientific challenges.

• The TrackML dataset consists of independent events generated through a Monte Carlo
simulation of proton-proton collisions.

• The full dataset contains 10,000 events. During pre-processing, we convert these
coordinates to spherical coordinates.

• This dataset is notable because the simulations give us information about the ground
truth: we know the ”actual” tracks of each particle. We can compute the physics
performance in terms of efficiency and purity.

4. Distributed Data Parallelism (DDP) Experiments and Results
A weak-type scaling experiment has been designed to investigate the scalability of the GNN
model training. Weak scaling means that the problem size increases as the number of devices
is increased. The baseline problem size for training on a single GPU is 100 events for training
and 20 events for validation. When the number of devices is increased, the size of the training
and validation sets is increased accordingly, as shown in Table 2. The training was run for 50
epochs for each experiment. Given the memory requirements for the graphs that represent the
events, we use a batch size of one for training. The results in Table 1 show how each physics
performance measure (efficiency, purity, and area under the curve (AUC)) increases with the
number of GPUs. The time per epoch and per batch also increases.

DDP can significantly reduce the training time by distributing the workload across multiple
devices. However, as shown in Figure 2 (a), the speed-up is not linear with the number of



GPUs. For 32 GPUs, the speed-up is approximately 22x. GPU utilization increases from 60%
for one GPU to 81% when training is run on 32 GPUs while memory utilization varies less.

Using DDP effectively, you can process more data and increase performance, as shown in
Figure 2 (b) and Table 1. Efficiency increases as the global batch size increases. Purity and
AUC also increase. However, we observe a decrease of these measures going from 16 GPUs to
32 GPUs.

Figure 2. Speed up of running DDP (a) and efficiency on the validation dataset (b)

Table 1. Validation Performance Metrics during Training and Runtime
# of GPUs Efficiency (%) Target Purity Total Purity (%) Purity (%) AUC Validation Loss Epoch (s) Batch (s)
1 99.6 87.831 99.249 99.152 98.577 0.00406 34.36 0.24
2 99.778 88.431 99.513 99.452 98.842 0.00226 39.63 0.29
4 99.838 88.508 99.587 99.536 98.846 0.00176 38.73 0.28
8 99.871 88.524 99.658 99.616 98.841 0.00141 42.12 0.31
16 99.903 88.499 99.674 99.633 98.884 0.00114 45.48 0.34
32 99.945 87.931 99.443 99.371 98.79 0.00124 47.6 0.37

Table 2. Max GPU Utilization and Memory on the Main Node

GPUs Train Events Val Events GPU Util (%) Memory (GB) Speed up
1 100 20 59.93 20.52 1
2 200 40 65.8 22.23 1.67
4 400 80 65.88 23.58 3.52
8 800 160 68.02 26.51 6.31
16 1600 320 73.91 26.18 11.86
32 3200 640 80.91 23.37 22.26

All the experiments were performed using the Perlmutter Supercomputer hosted by the
National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National
Laboratory. Each Perlmutter node has a single 64-core AMD EPYC CPU and four NVIDIA
A100 GPU accelerators with 40 GB and 80 GB of memory. We used PyTorch 2.3, PyG 2.5, and
PyTorch Lightning 2.4 for the software stack.



5. Conclusion
The increasing complexity and volume of data in modern computational tasks necessitate
adopting parallel and distributed computing techniques for deep learning training. This paper
provides a scalability analysis of the distributed data-parallel training of the track reconstruction
GNN model.

• Data Parallelism: DDP allows you to split your dataset across multiple GPUs (Figure
1).

• Reduced Training Time: By distributing the workload across multiple devices, DDP
can significantly reduce the training time. However, as shown in Figure 2 (a) the speed-up
is not linear with the number of GPUs.

• Increase Performance: By utilizing DDP effectively, you can process more data and
increase performance as shown in figure 2 (b) and in Table 1.

• In the future, we plan to investigate the relationship between the number of devices and
the increase in model efficiency and how to tune the learning rate for the DDP.
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