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Abstract. Traditionally, inference in liquid xenon direct detection dark matter experiments
has used estimators of event energy or density estimation of simulated data. Such methods
have drawbacks compared to the computation of explicit likelihoods, such as an inability to
conduct statistical inference in high-dimensional parameter spaces, or a failure to make use of
all available information. In this work, we implement a continuous approximation of an event
simulator model within a probabilistic programming framework, allowing for the application
of high performance gradient-based inference methods such as the No-U-Turn Sampler. We
demonstrate an improvement in inference results, with percent-level decreases in measurement
uncertainties. Finally, in the case where some observables can be measured using multiple
independent channels, such a method also enables the incorporation of additional information
seamlessly, allowing for full use of the available information to be made.

1 Introduction
Inference in particle physics is often based on black-box simulators that can faithfully reproduce the
physics involved; however, such simulations do not provide tractable likelihoods or probability densities,
leading to the use of either Approximate Bayesian Computation or approximate likelihoods obtained via
density estimation [1]. Simulators constructed within probabilistic programming languages present an
alternative that can allow us to conduct simulation-based inference by computing differentiable likelihoods
directly using the models that our simulators are based on [1].

Prior work in particle physics which integrates existing event simulators into the probabilistic pro-
gramming paradigm, but without making the simulators directly compatible with automatic differen-
tiation [2, 3]. Making differentiable models is often challenging in particle physics as many physical
processes, such as generation of quanta, are discrete. Despite these difficulties, compatibility with auto-
matic differentiation frameworks such as JAX [4] confers significant benefits, enabling the application of
high-performance gradient-based inference methods, such as variational inference [5, 6], and the No-U-
Turn Sampler (NUTS) [7]. In this work, we demonstrate an approach using an approximate binomial
distribution and the probabilistic programming framework numpyro [8, 9] to compute differentiable like-
lihoods. To that end, we introduce bayesNEST, a partial implementation of the NEST model for liquid
nobel element particle physics detectors, including dark matter experiments XENON and LZ [10, 11].

Dark matter is one of the greatest mysteries in physics–while most of the matter in the universe is dark
matter, its particle nature is not understood [12]. Consequently, liquid xenon detectors are built to search
for WIMP dark matter [13]. These experiments have other physics channels, including measurements of
double electron capture in 124Xe [14, 15]. These measurements are typically conducted in a low-statistics
regime, necessitating sophisticated approaches to inference. Typically, an estimator for event energy is
used for inference when searching for electronic recoil signals in these liquid xenon experiments [16, 17].
In analyses using nuclear recoil events, likelihoods are instead estimated using density estimation from



simulated events [18]. Density estimation techniques suffer from the curse of dimensionality [1], whereas
estimators computed from observed data might not make use of all available information.

Another approach to this problem is to marginalise over all discrete parameters the likelihood [19].
While this approach is more exact, it can be very computationally and memory intensive to construct the
large arrays of likelihoods needed to enumerate over the plausible range of discrete parameters. As such,
this work is complementary and can be used to reduce the computational and memory requirements of
inference using explicit likelihoods where the approximations we introduce are acceptable.

2 Background
2.1 Dual-phase Xenon Time Projection Chambers
Dual-phase xenon time projection chambers (TPCs) use an active target of liquid xenon, with a layer
of gaseous xenon in the upper portion of the detector. The detector is instrumented with arrays of
photomultiplier tubes (PMTs) on the top and bottom. When a particle interaction occurs in the liquid
xenon target, scintillation photons are produced. This signal, termed S1, is detected by the PMTs. In
addition, electrons are liberated and drifted towards the gaseous region at the top of the detector using
an electric field, the drift field. These electrons produce a secondary S2 signal in the gaseous phase.

In the current-generation dual-phase xenon detectors experiments LZ and XENONnT, there are 494
PMTs distributed between the top and bottom sensor arrays [20, 10]. Signals are classified as S1 or S2
based on the shape of the signal waveform and the distribution of the signal across the sensors [17, 21],
and the amplitude of signals are determined by integrating the signal waveforms. These TPCs are capable
of 3D position reconstruction; (x, y) positions can be estimated using the pattern of S2 signal amplitudes
across the top PMT array, whereas the z positions can be estimated from the time delay between the
S1 and S2 signals. Events can be separated into several categories, including electronic recoils, typically
produced by gamma rays and beta decays, and nuclear recoils, produced by neutrons, neutrinos, and
WIMP dark matter. More details about liquid xenon TPCs can be found in the following review: [13].

2.2 The Signal Generation Model
In this work, we focus on inference involving electronic recoil events, and thus have implemented a
probabilistic model for the S1 and S2 signals expected from beta decays; our implementation will be
described in section 3.2. In this section, we will describe how these signals are modelled for electronic
recoil events according to the Nobel Element Simulation Technique (NEST). This description is based
on [22] and codebase of NEST version 2.3.11 [22].

Given an interaction of energy E, the total number of quanta is computed as the following truncated
gaussian discretised by rounding,

µq = E

W
, Nq ∼

⌊
TN

(
µq,

√
µq, a = 0, b = ∞

)
+ 0.5

⌋
, (1)

where W [eV] = 21.94−2.93ρ is the workfunction, the average energy required to produce a single quanta,
and (a, b) is the support of the truncated distribution. ρ refers to the density of liquid xenon. Typical
values of the workfunction lie within the range of 13 eV ∼ 14 eV.

The quanta (Nq) are sorted into the categories of excitons and ions using a binomial distribution,
Ni ∼ B(Nq, pi), Nex = Nq − Ni, where Ni is the number of ions, Nex is the number of excitons, and
pi is the probability of each quanta being an ion. Finally, some ions represented by Ni might undergo
recombination to be produce S1 photons, instead of being part of the S2 ionisation signal. This is
modelled using a discretised and truncated skew-normal distribution, as given by

µe = (1 − pr)Ni, Ne ∼ ⌊TSkewN (µe, σe, α, a = 0, b = ∞) + 0.5⌋ , Nγ = Nq − Ne, (2)

where pr is the recombination probability, µe and σe are the mean and standard deviation of the skew-
normal distribution, and α is the shape parameter controlling skewness.

From Nγ , the number of photons, and Ne, the number of electrons, the S1 signal simulated using the
following detector model:
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)
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)
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where g1
pDP E

is the probability of detecting a photon, pDP E is the probability of a sensor detecting a
doubled signal from a single scintillation photon due to double photoelectron emission [23], and σP S is



the the sensor energy resolution. The S2 detector model is instead given by

N ′
e ∼ B (Ne, pe) , S2 ∼ N

(
N ′

e, σe

√
N ′

e

)
, (4)

where pe is the probability that an electron is successfully drifted to the top of the liquid xenon and then
extracted into the gas phase, and σe is the spread of the S2 signal. It can be seen that many of the latent
parameters are discrete, posing a problem for direct implementation into a differentiable model.

3 Methods
3.1 Continuous Approximation for the Binomial Distribution

Approximations can be used to work around the aforementioned discrete random variables. The nor-
mal distribution is a commonly used approximation, but it does not perform well when p is far away from
0.5 as there is no skewness. This can be remedied using either transformations of approximating distri-
butions such as a normal distribution [24], or a skew-normal distribution [25]. Finding the skew-normal
shape parameters that approximate a binomial distribution, however, requires one to solve an equation
where the solution does not have a simple functional form. This makes it tricky to use the skew-normal
distribution as an automatic-differentiation-compatible approximation of the binomial distribution. To
address this issue, we use a mixture of a normal distribution and a beta distribution scaled by N , the
number of trials. We believe that this is the first time a beta-normal mixture distribution has been used
as a continuous approximation of a binomial distribution to obtain a differentiable likelihood.

We match the first two moments of the distributions to determine the correct parameters of the normal
and beta distributions that approximate a given binomial distribution. If a mixture distribution comprises
distributions with equal mean, then the higher-order central moment of the mixture distribution is simply
given by a weighted sum of the moments of the constituent distributions. This can be derived as such:

E [(X − µ)n] =
∫ ∞

−∞
(x − µ)n

k∑
i=0

wipi(x) =
k∑

i=0
wi

∫ ∞

−∞
(x − µ)npi(x) =

k∑
i=0

wiE [(Xi − µ)n] , (5)

where X is a random variable with the probability density f(x) =
∑k

i=0 wipi(x). Thus, if the normal
and beta distributions match the mean and variance of the binomial distribution, any mixture of the two
will match the first two moments of the binomial distribution. Similarly, the non-central moments of a
mixture distribution can also be given by a weighted-sum of the constitutents.

The mean and variance of binomial distribution B(n, p) are np and np(1 − p), respectively [26]. This
corresponds to the normal distribution N [µ = np, σ =

√
np(1 − p)]. As the beta distribution is the

conjugate distribution of the binomial distribution [27], one might intuitively expect the corresponding
Beta distribution to be Beta(α, β), where α = np, and β = n(1 − p). However, it turns out that
this distribution does not match the variance of the binomial distribution. Instead, the matching beta
distributions has the following parameters:

α′ = α − α

α + β
, β = β − β

α + β
. (6)

The next step is to match the third standardised moment of the distributions, given by

γ = E

[(
X − µ

σ

)3
]

=
E

[
X3]

− 3µσ2 − µ3

σ3 . (7)

It can be seen that the skewness of a distribution does not depend on the scale of a distribution, and
thus the following derivation can be carried out without needing to additionally account for the scale of
the beta distribution. As E

[
X3]

can also be obtained via a weighted sum for a mixture distribution,
and the means and variances are already matched, we can simply focus on this raw moment. The
skewness of a normal distribution is zero; as such, E

[
X3

N
]

= 3µσ2 + µ3. The skewness of Beta(α′, β′) is
γβ = [2(β′ − α′)

√
α′ + β′ + 1]/[(α′ + β′ + 2)

√
α′β′] [26]. The skewness of a binomial distribution is given

by γBinom = 1−2p√
Np(1−p)

[26].



We can thus find the relative weights by solving the following system of equations for the weight w,
where w is the weight for the beta distribution in the mixture, and correspondingly the weight for the
normal distribution is 1 − w:

x − 3µσ2 − µ3

σ3 = 2(β′ − α′)
√

α′ + β′ + 1
(α′ + β′ + 2)

√
α′β′ ,

1 − 2p√
Np(1 − p)

= wx + (1 − w)(3µσ2 + µ3) − 3µσ2 − µ3

σ3 . (8)

The solution is given by w = α′+β′+2
2(α′+β′+1) .
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Figure 1: Comparison of the performance of the beta-normal mixture distribution introduced in sec-
tion 3.1 versus that of a normal distribution (top) and a skew-normal distribution (bottom), when ap-
proximating a binomial distribution. A comparison using the earth mover’s distance is shown on the
left, and one using the maximum absolute error is shown on the right. Blue and red indicate regions of
the binomial distribution parameter space where the beta-normal mixture distribution outperforms and
under-performs, respectively. The leftmost corners of the bottom plots are empty because for those re-
gions of parameter space, we were unable to obtain numerical solutions for the skew-normal distribution.

We now compare the performance of the beta-normal mixture distribution introduced in this work, a
skew-normal distribution, and a normal distribution when approximating a binomial approximation using
both the maximum absolute error [25, 28] and the earth mover’s distance [29]. This is shown in fig. 1.
We can see that the normal distribution is a poorer approximation for the binomial distribution than the
beta-normal mixture distribution, however, there are regions of relative over- and under-performance in
the parameter space when comparing the mixture and the skew-normal distributions. The chief advantage
of the mixture distribution is thus the simple closed form of the distribution parameters, enabling the
implementation of a model that is fully compatible with automatic differentiation in JAX [4].

3.2 Model Implementations
A graphical representation of the model introduced in this work, termed bayesNEST, is shown in fig. 2.
This model is implemented in numpyro [8, 9]. The NEST emissions model (see section 2.2) is represented
within the plate, as variables within the NEST emissions model are repeated for each event. µI represents
the 125I rate (see section 4.2) and is not used for the line search described in section 4.1. µsig is
the signal, and µbg is the rate of background events. Nobs is the total number of events observed,
and is given a Poisson likelihood where λ =

∑
i µi. E has a prior parameterised by the signal rate

parameters. In the case of a line search, the prior corresponds to a mixture distribution with two
components: a uniform distribution and a normal distribution, corresponding to the uniform background
and the signal respectively. The weights of the mixture distribution are given by the ratio of µbg to µsig,
normalised such that the weights sum to 1. For the double-electron capture measurement, another
normal distribution is added, corresponding to the 125I background (see section 4.2). Mono-energetic
components are represented using normal distributions with standard deviations much smaller than the
energy resolution, instead of a delta function, so that the model has a smooth and continuous derivative.



µI µsig µbg

Nob E

Nq

Ni

N ′
γ

N ′′
γS1

Ne

N ′
e S2

µI µsig µbg

Nob Ê

Figure 2: Left: Graphical representation of bayesNEST model. A plate, indicated by the rectangle, is
used to represent the parts of the model that represent the emission model described in section 2.2. Right:
Graphical representation of the model for energy spectrum fit. The only variable within the plate is the
estimated energy. Observed variables are shown in grey.

We benchmark inference with the bayesNEST model (see fig. 2) against an energy spectrum fit.
For this model, the observable is an estimator of energy, Ê = W (S1/g1 + S2/g2), where W is the
workfunction, g1 is the average signal amplitude observed from a single emitted photon, and g2 is the
average signal amplitude observed from a single S2 electron. The prior for Ê is defined as a mixture
distribution where the normally-distributed components have a larger standard deviation, corresponding
to the standard deviation of the estimator Ê given a mono-energetic component. This energy resolution
is estimated for each mono-energetic component by generating 5 × 104 events using the NEST simulator,
computing Ê for each event, and then computing the corrected sample standard deviation.

4 Results
4.1 Mono-energetic Signal Search with Known Background Shape
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Figure 3: Left: 90% credible intervals for the signal rate parameter for the mono-energetic signal search.
20 intervals are computed for each of µtrue ∈ {0, 20, 40}. Right: 90% credible intervals for the signal
rate parameter for the double-electron capture search. 20 intervals are computed for each of µbg ∈
{75, 100, 150}. Intervals computed using bayesNEST are shown in dark blue, and those computed from
a spectral fit are shown in light blue. The mean from all samples for each set of 20 runs is shown in red
and pink for bayesNEST and for the spectral fit, respectively.

We first compare the difference between inference using a simple spectral fitting model and the
bayesNEST model (see section 3.2) using a search for a mono-energetic signal with a flat background.
This simulates searches for dark matter or physics beyond the standard model using the electronic recoil
channel in liquid xenon detectors, such as those conducted in [16] and [17].

We simulated background data with a flat spectrum between 50 keV and 350 keV and a rate of 50
events over the interval using NEST version 2.3.11 [22] and nestpy [30]. A search for a mono-energetic
peak at an energy of 200 keV is conducted on events selected to have estimated energies of between
100 keV and 300 keV. The NUTS sampler implemented in numpyro [9, 8] is used. This is repeated 20
times each for true signal rates (µtrue) of 0, 20, and 40 events. These experiments were run using 8 CPU



Table 1: Left: The mean 90% credible intervals from bayesNEST (E[σ90%]), spectral fitting
(
E[σ′

90%]
)
,

and the mean relative difference in interval size
(
E

[
1 − σ′

90%/σ90%
])

for the mono-energetic signal search.
Right: The mean 90% credible intervals from bayesNEST (E[σ90%]), spectral fitting

(
E[σ′

90%]
)
, and the

mean relative difference in interval size
(
E

[
1 − σ′

90%/σ90%
])

for the double-electron capture search.

µtrue E[σ90%] E[σ′
90%] E

[
1 − σ′

90%
σ90%

]
0 4.8 ± 0.2 4.9 ± 0.2 3.6 ± 0.9%
20 16.1 ± 0.1 16.4 ± 0.1 1.6 ± 0.4%
40 22.2 ± 0.1 22.3 ± 0.1 0.5 ± 0.3%

µbg E[σ90%] E[σ′
90%] E

[
1 − σ′

90%
σ90%

]
75 34.6 ± 0.6 35.0 ± 0.6 0.9 ± 0.7%
100 35.2 ± 0.6 35.8 ± 0.6 2.0 ± 0.7%
150 37.8 ± 0.7 38.5 ± 0.7 1.9 ± 0.8%

cores, and took less than 1 day. The results are shown on the left in fig. 3 and table 1. We can see that
inference using bayesNEST has reduced variance, and that the mean is closer to the true value µtrue.

4.2 Searching for Rare Nuclear Decays
We then compare the difference between the two methods of inference by simulating a search for the
radioactive decay of 124Xe via double-electron capture. This is a challenging problem, as in addition
to a smooth background component, there exists an 125I background which is also mono-energetic at
67.3 keV, very close to the signal we are interested in, at 64.3 keV [14].

For this test, we fix the signal rate to be 50 events and the 125I background rate to be 5 events when
simulating data. We consider 3 scenarios with differing rates of the flat background (µbg): 75 events, 100
events, and 150 events. This is defined on an energy range of 40 keV to 110 keV, and for inference, data
with estimated energies of between 50 keV and 100 keV are selected. These experiments were run using
8 CPU cores and took less than 1 day to complete as well. The results are shown on the right in fig. 3
and table 1. As with the results in section 4.1, we can see that inference with bayesNEST produces
results with lower uncertainty, and the mean over 20 runs is closer to the true signal rate of 50 events.

5 Discussion
Inference in liquid xenon dark matter experiments has largely been based on the use of estimators of
event energy [14, 16, 17], or comparisons of data with empirical distributions from simulated data [31, 18].
Prior work on computing explicit event-by-event likelihoods [19] has relied on marginalising a discrete
likelihood over a large array, requiring computationally and memory intensive enumeration of discrete
latent variables. In this work, we demonstrate the use of continuous approximations to construct such a
likelihood, alleviating the need for the marginalisation procedure, and enabling inference using gradient-
based inference methods, such as variational inference [5, 6] and the No-U-Turn Sampler (NUTS) [7].

The approximate procedure introduced in this work produces improvements over inference using an
energy estimator, offering percent-level improvements in the uncertainty of inferred parameters. In the
background-dominated regime, sensitivity is asymptotically proportional to signal/

√
background [32]; as

such, if both signals and background event rates are proportional to the detector target mass, the sensi-
tivity scales as the square-root of exposure. A 4% improvement such as that demonstrated in section 4.1
would thus correspond to a 7% increase in exposure. The high cost of xenon [20] means that even small
improvements from analysis or inference technique can represent very cost-effect investments.

In addition to improvements in inference, the use of explicit likelihoods allow for inference to easily
incorporate additional information if available. For example, N ′

γ can be directly estimated by counting
pulses in photosensors independently of the S1 amplitude [33, 34]. This can be easily incorporated
into the model introduced in this work, either by directly making N ′

γ in the model an observable,
or by introducing a new observable depending on N ′

γ while modelling for detection efficiency. Discrete
measurements from pulse counting are often better at lower energies and continuous measurements based
on integration of waveforms are often better at higher energies. The ability to integrate discrete and
continuous measurements is also invaluable, as it would allow for a single unified scheme that can make
use of both sources of information, without having a sharp transition point between the two methods
that might complicate inference or data analysis.
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