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Abstract. In recent years, we have seen a rapid increase in the variety of computational
architectures, featuring GPUs from multiple vendors, a trend that will likely continue in the
future with the rise of possibly new accelerators. The High Energy Physics (HEP) commu-
nity employs a wide variety of algorithms for accelerators which are mostly vendor-specific,
but there is a compelling demand to expand the target capabilities of these tools via single-
source cross-platform performance-portable abstraction layers, such as SYCL. In this work,
we present GenVectorX, a SYCL-based multi-platform extension of the GenVector package of
ROOT, that provides classes and functionalities to represent and manipulate particle events.
This tool is intended for general usage, but it specifically targets HEP experiments data
processing. Moreover, we discuss results showing that the SYCL-based implementation ex-
hibits comparable performance and scalability as the CUDA implementation when targeting
NVIDIA GPUs.

1 Introduction
High Energy Physics (HEP) research is characterised by the need for processing and analysing huge
amounts of particle collision data coming from the accelerators. ROOT [3] is a popular tool for storing,
analyzing and visualizing physics data regarding particle collisions. These collision events are expressed as
operations on particles, represented as 4-dimensional time-space vectors, also known as Lorentz Vectors.
Within ROOT, the GenVector package contains classes for specialized vectors in 2, 3, and 4 dimensions,
and their operations, providing models and capabilities tailored to HEP analysis. The largest source of
such data is the Large Hadron Collider (LHC), hosted at CERN in Switzerland, which since its start has
reached peaks of 1 PB/s of data generated from physics events that need to be stored and accessed by
the physics community to be analysed.

In this scenario, in which scientists need to run their analysis on computing facilities exhibiting
different hardware configurations and composition, performance portability plays a crucial role. Such
considerations motivate the need for developing performance portable software tailored to the HEP use
case. Performance portability of scientific computing applications is gaining importance as hardware be-
comes more heterogeneous. While NVIDIA GPUs are nowadays standard co-processors, other vendors’
GPU architectures are emerging in the High Performance Computing (HPC) scenario, see e.g. LUMI
HPC system which is based on AMD GPUs and Aurora HPC system on Intel(R) GPUs. Moreover, the
landscape of multi-core CPUs and alternative accelerators is also diversifying, see e.g. FPGAs and the
RISC-V initiative [11]. Porting scientific codes to each new platform via hardware-specific programming
languages is not sustainable as it costs valuable human time for development and maintenance. Per-
formance portability frameworks overcome this issue by introducing an abstraction layer that can map



Single Instruction Multiple Data (SIMD) parallel models across different hardware platforms. This con-
cept has been successfully demonstrated, for example, by libraries like Kokkos [4], Alpaka [18], as well as
SYCL [9], providing abstractions to enable heterogeneous device programming. In this work, we focus
on SYCL because of its performance efficiency and portability on different devices, such as CPUs, GPUs,
and FPGAs. A number of general purpose studies have detailed the process of migrating from CUDA to
SYCL, see [12, 16, 2, 5, 7, 17]. However, to the best of our knowledge, none of them has been focusing the
porting of a fundamental HEP library, whose benefits could reflect on a wide variety of related software.

In this paper, we present GenVectorX, an extension of GenVector for execution on NVIDIA GPUs
through a native CUDA as well as other platforms via a SYCL implementation of the Lorentz Vector
classes that facilitate computations with physical vectors. We compare the performance of one of the
most common operations involving Lorentz Vectors on multiple platforms. We carry out an extensive
test campaign on NVIDIA GPUs, with particular focus on the performance gap between native CUDA
and SYCL code execution. Focusing on an invariant mass computation problem, we study scaling and
demonstrate that our SYCL implementation can reach performance portability. This paper is organized as
follows. Section 2 details the porting procedure and provides quantitative results about code divergence.
Performance analysis results are presented in Section 3, and Section 4 concludes this treatise.

2 Migration process
2.1 Computational models
SYCL is a Khronos Group language standard that enables code for heterogeneous and offload processors,
to be written using modern ISO C++, providing APIs and abstractions for finding devices (e.g. CPUs,
GPUs, FPGAs) on which code can be executed, and to manage data resources and code execution on
those devices. The SYCL kernel consists of the main computational kernel, which can be expressed as
a C++ lambda function or as a functor object, the argument values associated with the kernel, and the
parameters defining index range. Similarly to the CUDA execution model, the SYCL index hierarchy
also consists of a 1, 2, or 3-dimensional grid of work-items, corresponding to the single execution threads.
These work-items are grouped into equal sized thread groups called work-groups. Beside the main global
memory, SYCL defines a local memory which is shared among all the work-items within a work-group
and which can be exploited to enhance data reuse. Depending on the implementation and the hardware
availability, this shared local memory can be mapped into different physical memories. Furthermore, the
work-items within a work-group can be synchronized with the use of barriers, but synchronization across
different work-groups is not possible. The SYCL standard defines two abstractions for declaring and
accessing data on devices with different memory contexts: buffers and Unified Shared Memory (USM)
pointers. With buffers, the data management is handled entirely by the SYCL runtime and access to the
underlying data is permitted via accessors. Buffers are accessible from both the host and the device. The
user needs to create an accessor that defines the type of access (read-only, write-only, or read-write), which
is information that the runtime uses to determine the data dependencies and necessary memory transfers.
For USM pointers, there are three different allocation types: host, device, and shared. These pointers
allow for direct dereferencing and fine-grained control over the ownership, but the data dependencies and
copy operations need to be handled by the user.

2.2 SYCL and CUDA extentions
With C++ being the programming language of choice, almost all classes and methods can be ported
to SYCL and CUDA in a straightforward manner by providing macros and wrapper functions that
encapsulate the differences between the host code for the two programming models. The main necessary
changes involve mathematical functions. In fact, in SYCL the OpenCL math functions are available in
the namespace sycl:: on host and device with the same precision guarantees as defined in the OpenCL
1.2 specification document [8] for host and device. In GenVectorX, all basic mathematical functions
belong to the namespace ROOT::Experimental:: and they are are compiled and guarded according to a
macro definition. Thus, when SYCL is enabled, the mathematical functions corresponds to their SYCL
equivalent. Similarly, when CUDA is enabled, all mathematical functions are defined according to their
CUDA equivalent. Unlike SYCL, where classes and methods does not need to be decorated to be called
on the device, CUDA requires the use of both host and device decorators, indicating that the
classes and methods can be called by both the host and the device. In order to maintain a single source
for CUDA, SYCL and standard CPU, we use instead decorators defined as macros which are defined as
blank whenever CUDA is disabled.

The strategies described so far allow to have a single source code defining classes and functionalities
to manipulate physicals vectors that can be used in code running on both host and device. Such object



template <c l a s s Sca lar , c l a s s LVector>
g l o b a l void Invar iantMassesKerne l

( LVector ∗v1 , LVector ∗v2 , Sca l a r ∗m,
s i z e t N)

{
i n t id = blockDim . x ∗ blockIdx . x +

threadIdx . x ;
i f ( id < N)
{

LVector w = v1 [ id ] + v2 [ id ] ;
m[ id ] = w. mass ( ) ;

}
}

Figure 1: Invariant Masses CUDA Kernel

template <c l a s s Sca lar , c l a s s Vector>
c l a s s Invar iantMassesKerne l
{
pub l i c :

Invar iantMassesKerne l
( LVector ∗v1 , LVector ∗v2 , Sca l a r ∗m,

s i z e t n)
: d v1 ( v1 ) , d v2 ( v2 ) , d m(m) , N(n

) {}

void operator ( ) ( s y c l : : nd item<1> item
) const

{
s i z e t id = item . g e t g l o b a l i d ( ) .

get (0 ) ;
i f ( id < N)
{

LVector w = d v1 [ id ] + d v2 [
id ] ;

d m [ id ] = w. mass ( ) ;
}

}

pr i va t e :
LVector d v1 ;
LVector d v2 ;
Sca l a r d m ;
s i z e t N;

} ;

Figure 2: Invariant Masses SYCL function object

can be included in user defined code targeting a CUDA or SYCL device. In order to provide user-ready
functionalities, we define higher level kernel functions to carry our most common computations in High
energy physics analysis. Such functions are defined as global CUDA kernels and, for what concerns
SYCL, as function objects. As an example, we detail a function kernel that will be used later in the
performance analysis, namely the Invariant Masses kernel. The InvariantMasses function returns the
invariant mass of two particles expressed in any 4-dimensional coordinate system. Figures 1 and 2 show
the CUDA kernel and the SYCL object function definitions, respectively. It is worth noticing that both
kernels can handle a template Lorentz Vector object that exposes mass computation via the method m().

2.3 Code Similarity
In this paper, our analysis focuses on the impact of manual code specialization upon developers with
regards to code maintenance. We measure this impact using a version of the code similarity metric
[10, 13] which represents the average pairwise distance between source codes used to target different
platforms. For the sake of clarity, let us formally introduce the following terminology: a problem is an
input to application, with a correctness test and observable performance; an application is a collection
of software that can run problems on one or more platforms; a platform is a collection of hardware and
software on which an application runs problems. Code similarity is calculated as:

CS(a, p,H) = 1−
(
|H|
2

)−1 ∑
(i,j)∈H×H

di,j(p, a) (1)

where di,j(p, a) represents the distance between the source code required to solve problem p using appli-
cation a on platforms i and j (from platform set H). As done in [16, 14], we adopt the Jaccard distance.

Table 1 shows code similarity of GenvectorX in both its CUDA and SYCL implementations against
GenVector, its pure C++ counterpart. Both implementations show a very high similarity score, proving



to have low impact on maintenance. However, SYCL implementation is still preferable for its ability of
targeting multiple backends.

Table 1: Code Similarity against pure C++ code

Similarity Platform Problem

0.9694 CUDA Invariant Masses
0.9715 SYCL Invariant Masses

3 Performance analysis
3.1 Experimental setup
We compare the GenVectorX library on three different computing environment:

1. NVIDIA GeForce RTX 3060 using CUDA 12.2

2. NVIDIA L4 using CUDA 12.3

3. NVIDIA A100 40GB PCIe using CUDA 12.2

4. AMD MI250X using ROCm 5.3.3

In the following section we conduct experiments aimed at showing whether performance portability
is achieved or not, focusing on the Invariant Masses example. We compare two different implementations
of SYCL compilers, i.e. Intel(R) oneAPI Toolkit [6] and AdaptiveCPP [1]. To determine how effective
SYCL is in optimizing data transfers, we select two strategies to compare: buffers with implicit transfers
via accessors (BUF) and USM device pointers with explicit transfers (PTR). Moreover, we investigate
the root causes of observed performance gaps.

3.2 Scaling: Kernel Execution Time
We evaluate the performance portability of SYCL by evaluating its scaling and comparing it against that
of CUDA. Results are shown in Figures 3, 4, 5 and 6. Each figure shows the execution time against the
input size. Results are shown for native CUDA, for Intel(R) OneAPI compiler with the use of device
pointers and USM, as well as for AdaptiveCPP compiler with the use of USM pointers and buffers. Only
the computational kernel evaluating Invariant Masses is measured. For every measurement, the timing
is evaluated as the best execution time out of three runs executed sequentially. Results do not highlight
significant differences between USM pointers and buffers. CUDA outperforms SYCL, whatever compiler
is adopted. AdaptiveCPP is outperformed by OneAPI implementation.

3.3 NVIDIA GPUs: Total Execution Time Breakdown
In order to better appreciate the difference between execution timing of the different implementations,
the code executed on NVIDIA GPUs has been profiled with NVIDIA NSight profiler. Results are shown
in Figures 7, 8 and 9. The graph plots the time spent in kernels, memory operations, and CUDA API calls
separately. Since the CUDA API calls for the two SYCL implementations are named differently, we also
combined these into 5 categories for clarity: event, kernel, memory, module, and stream operations. The
CUDA memory operations refer to memory transfer time, while the CUDA memory API calls refer to the
time spent on setting up the memory operations. The CUDA memory API calls include (de)allocations
and copying. Note that the CUDA API calls are executed by the CPU, while the kernels are executed
on the GPU, so there is some overlap in runtime that is not illustrated. It is interesting to point out
how the performance gap on RTX3060 and L4 (Figures 7, 8) seems to be caused by the kernel execution
itself.

4 Conclusion
In this work, we have described our efforts for creating GenVectorX, a SYCL and CUDA version of
GenVector, a C++ package providing classes and functionality to particles involved in collisions in High
Energy Physics research. This package is part of the ROOT library, a tool for storing, analyzing and
visualizing physics data regarding particle collisions adopted by physicists from all over the world. With



Figure 3: RTX3060
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Figure 4: L4
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Figure 5: A100
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Figure 6: MI250X

410 510 610 710 810
Number of Particles

4−10

3−10

2−10

R
un

tim
e 

(s
)

oneAPI (BUF)
oneAPI (PTR)
AdaptiveCPP (BUF)
AdaptiveCPP (PTR)

Figure 7: RTX3060 Figure 8: L4 Figure 9: A100
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this project, we have explored the potentiality of SYCL as performance portable framework to migrate
and modernize the fundamental GenVector package. We have carried out an extensive test campaign,
showing that SYCL can achieve competitive performance with respect to CUDA. Furthermore, we have
compared two main different implementations of SYCL compiler, namely AdaptiveCPP and Intel(R)
OneAPI, showing that it is possible to achieve comparable performance with these tools. It is worth
to remark that the use of two compiler has been particularly helpful in the context of code debugging.
Moreover, SYCL has confirmed its performance portability capacity with near-one code similarity. These
primary results encourage us to pursue the porting project to a production-ready level, which will next
target the integration among the other packages in the ROOT library, in particular with user-familiar
tools such as ROOTDataFrame (RDF) [15].
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