# Signal region combination in CheckMATE

Krzysztof Rolbiecki University of Warsaw

Conference of Norwegian Financial Mechanism "Early Universe", Warszawa 9.10.2023



#### Contents

- 1. From simplified models to recasting
- 2. CheckMATE overview
- 3. Implementation of searches with multibin SRs
- 4. Application: pushing limits for electroweakinos
- 5. Summary and outlook

### Why simplified models?

- Realistic new physics models tend to involve many new parameters, for example the Minimal Supersymmetric Standard Model ~ 100
- This makes the interpretation and design of searches difficult
- The purpose of simplified models is to reduce the number of parameters: include only a few particles and interactions of a full model with fixed branching fractions

#### Simplified Models for LHC New Physics Searches

Daniele Alves,<sup>1</sup> Nima Arkani-Hamed,<sup>2</sup> Sanjay Arora,<sup>3</sup> Yang Bai,<sup>1</sup> Matthew Baumgart,<sup>4</sup> Joshua Berger,<sup>5</sup> Matthew Buckley,<sup>6</sup> Bart Butler,<sup>1</sup> Spencer Chang,<sup>7,8</sup> Hsin-Chia Cheng,<sup>8</sup> Clifford Cheung,<sup>9</sup> R. Sekhar Chivukula,<sup>10</sup> Won Sang Cho,<sup>11</sup> Randy Cotta,<sup>1</sup> Mariarosaria

D'Alfonso,<sup>12</sup> Sonia El Hedri,<sup>1</sup> Rouven Essig (Editor),<sup>1, \*</sup> Jared A. Evans,<sup>8</sup> Liam Fitzpatrick,<sup>13</sup> Patrick Fox,<sup>6</sup> Roberto Franceschini,<sup>14</sup> Ayres Freitas,<sup>15</sup> James S. Gainer,<sup>16, 17</sup> Yuri Gershtein,<sup>3</sup> Richard Gray,<sup>3</sup> Thomas Gregoire,<sup>18</sup> Ben Gripaios,<sup>19</sup> Jack Gunion,<sup>8</sup> Tao Han,<sup>20</sup> Andy Haas,<sup>1</sup> Per Hansson,<sup>1</sup> JoAnne Hewett,<sup>1</sup> Dmitry Hits,<sup>3</sup> Jay Hubisz,<sup>21</sup> Eder Izaguirre,<sup>1</sup> Jared Kaplan,<sup>1</sup> Emanuel Katz,<sup>13</sup> Can Kilic,<sup>3</sup> Hyung-Do Kim,<sup>22</sup> Ryuichiro Kitano,<sup>23</sup> Sue Ann Koay,<sup>12</sup> Pyungwon Ko,<sup>24</sup> David Krohn,<sup>25</sup> Eric Kuflik,<sup>26</sup> Ian Lewis,<sup>20</sup> Mariangela Lisanti (Editor),<sup>27, †</sup> Tao Liu,<sup>12</sup> Zhen Liu,<sup>20</sup> Ran Lu,<sup>26</sup> Markus Luty,<sup>8</sup> Patrick Meade,<sup>28</sup> David Morrissey,<sup>29</sup> Stephen Mrenna,<sup>6</sup> Mihoko Nojiri,<sup>30</sup> Takemichi Okui,<sup>31</sup> Sanjay Padhi,<sup>32</sup> Michele Papucci,<sup>33</sup> Michael Park,<sup>3</sup> Myeonghun Park,<sup>34</sup> Maxim Perelstein,<sup>5</sup> Michael Peskin,<sup>1</sup> Daniel Phalen,<sup>8</sup> Keith Rehermann,<sup>35</sup> Vikram Rentala,<sup>36</sup> Tuhin Roy,<sup>37</sup> Joshua T. Ruderman,<sup>34</sup> Veronica Sanz,<sup>39</sup> Martin Schmaltz,<sup>13</sup> Stephen Schnetzer,<sup>3</sup>

May 2011

13

[hep-ph]

arXiv:1105.2838v1

Philip Schuster (Editor),<sup>40, 2, ‡</sup> Pedro Schwaller,<sup>41, 16, 42</sup> Matthew D. Schwartz,<sup>25</sup> Ariel Schwartzman,<sup>1</sup> Jing Shao,<sup>43</sup> Jessie Shelton,<sup>44</sup> David Shih,<sup>3</sup> Jing Shu,<sup>11</sup> Daniel Silverstein,<sup>1</sup> Elizabeth Simmons,<sup>10</sup> Sunil Somalwar,<sup>3</sup> Michael Spannowsky,<sup>7</sup> Christian Spethmann,<sup>13</sup> Matthew Strassler,<sup>3</sup> Shufang Su,<sup>45, 36</sup> Tim Tait (Editor),<sup>36, §</sup> Brooks Thomas,<sup>46</sup> Scott Thomas,<sup>3</sup> Natalia Toro (Editor),<sup>40, 2, ¶</sup> Tomer Volansky,<sup>9</sup> Jay Wacker (Editor),<sup>1, \*\*</sup> Wolfgang Waltenberger,<sup>47</sup> Itay Yavin,<sup>48</sup> Felix Yu,<sup>36</sup> Yue Zhao,<sup>3</sup> and Kathryn Zurek<sup>26</sup>

(LHC New Physics Working Group)

<sup>1</sup>SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
<sup>2</sup>Institute for Advanced Study, Princeton, New Jersey 08540, USA
<sup>3</sup>Dept. of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
<sup>4</sup>Johns Hopkins University, Dept. of Physics and Astronomy, Baltimore, MD 21218, USA
<sup>5</sup>LEPP, Cornell University, Ithaca, NY 14853, USA
<sup>6</sup>Fermi National Accelerator Lab., Theory Group, Batavia, IL 60510, USA
<sup>7</sup>University of Oregon, Department of Physics, Eugene, OR 97403-1274 USA
<sup>8</sup>University of California Davis, Department of Physics, Davis, CA 95616-8677, USA
<sup>9</sup>Department of Physics, UC Berkeley, Berkeley CA, 94720, USA
<sup>10</sup>Dept. of Physics and Astronomy, Michigan State University and 18824, USA

#### **Benchmark MSSM example**



#### **Example: supersymmetry**





### The purpose of simplified models

A simplified model is specifically designed to involve only a few new particles and interactions. They are limits of more general new physics scenarios, where all but a few particles are integrated out.

- Identifying the boundaries of search sensitivity: one- and two-dimensional slices within a simplified model can illustrate these boundaries very clearly and help to identify kinematic ranges
- Characterizing new physics signals: simplified models can be a starting point for identification of observed signal with different realistic models
- Deriving limits on more general models: the initial assessment within a simplified model should be followed by a dedicated recasting study

### Example: gluino simplified models – jets+MET



### Simplified model summary

- Simplified models cover a small and often unrealistic part of the models and parameters landscape
- Simplified models provide an easy parametrization in terms of just a few parameters e.g., 2-3 masses, perhaps a branching fraction (but often 100%)
- Hundreds of searches for supersymmetry but other models used to be less popular (this is changing though)
- Provide a clear link in terms of limits between particular topologies and final states e.g.: jets + MET, jets + lepton + MET, jets + lepton...
- Simplified models were never meant as a final word in searches for TeVscale physics
- A quick way of recasting searches optimized for simplified models is essential in the quest for new physics

#### Monte Carlo tools & discoveries at the LHC

Searches for new TeV-scale physics still one of the main goals in the coming years

- Theoretical model building offers a vast number of models with particles in the LHC reach
- Experimental papers cover only a small fraction of existing models
- We need tools to cover the gap and: assess viability of models, guide future searches, looking for blind spots
- Computer tools are essential: Monte Carlo generators, fast detector simulators, cross section calculators
- We need tools to analyze MC output easily and compare it quickly and reliably with existing experimental exclusions

This is the main purpose of recasting tools

#### Reinterpretation/recasting in a nutshell



#### Contents

#### 1. From simplified models to recasting

#### 2. CheckMATE overview

- 3. Implementation of searches with multibin SRs
- 4. Application: pushing limits for electroweakinos
- 5. Summary and outlook



Current Members: Manimala Chakraborti, Nishita Desai, Florian Domingo, Jong Soo Kim, Krzysztof Rolbiecki, Roberto Ruiz de Austri, Ipsita Saha, Liangliang Shang, Mangesh Sonawane, Zeren Simon Wang, Yuanfang Yue

Former Members: Daniel Dercks, Manuel Drees, Herbert Dreiner, Frederic Ponzca, Jamie Tattersall, Thorsten Weber

- CheckMATE is a general tool for recasting arbitrary model
- Accepts events as .hepmc, .lhe; integration with Pythia and MadGraph
- based on Delphes for detector simulation
- using existing LHC searches calculates a limit on a given parameter point
- From SLHA file to the limit in one click
- one can easily constrain models that were not covered in the original ATLAS/CMS search
- currently more than 40 searches at 13 TeV coded, including 14 with full luminosity
- long-lived particles branch
- <a href="https://checkmate.hepforge.org/">https://github.com/CheckMATE2/checkmate2</a>



#### CheckMATE: ATLAS analyses

| #Name                | NSR | Description                                                                               | Lumi |
|----------------------|-----|-------------------------------------------------------------------------------------------|------|
| atlas 1604 01306     | 1   | photon + MET search at 13 TeV                                                             | 3.2  |
| atlas 1605 09318     | 8   | >= 3 b-jets + 0-1 lepton + Etmiss                                                         | 3.3  |
| atlas 1609 01599     | 9   | ttV cross section measurement at 13 TeV                                                   | 3.2  |
| atlas 1704 03848     | 5   | monophoton dark matter search                                                             | 36.1 |
| atlas conf 2015 082  | 1   | leptonic Z + jets + Etmiss                                                                | 3.2  |
| atlas conf 2016 013  | 10  | 4 top quark (1 lepton + jets, vector like quark search)                                   | 3.2  |
| atlas conf 2016 050  | 5   | 1-lepton + jets + etmiss (stop)                                                           | 13.3 |
| atlas conf 2016 054  | 10  | 1-lepton + jets + etmiss (squarks and gluino)                                             | 14.8 |
| atlas conf 2016 076  | 6   | 2 leptons + jets + etmiss                                                                 | 13.3 |
| atlas conf 2016 096  | 8   | 2-3 leptons + etmiss (electroweakino)                                                     | 13.3 |
| atlas conf 2017 060  | 20  | monojet search                                                                            | 36.1 |
| atlas conf 2016 066  | 2   | search for photons, jets and met                                                          | 13.3 |
| atlas 1712 08119     | 39  | electroweakinos search with soft leptons                                                  | 36.1 |
| atlas 1712 02332     | 24  | squarks and gluinos, 0 lepton, 2-6 jets                                                   | 36.1 |
| atlas 1709 04183     | 14  | stop pair production, 0 leptons                                                           | 36.1 |
| atlas 1802 03158     | 7   | search for GMSB with photons                                                              | 36.1 |
| atlas 1708 07875     | 2   | electroweakino search with taus and MET                                                   | 36.1 |
| atlas 1706 03731     | 19  | same-sign or 3 leptons RPC and RPV SUSY                                                   | 36.1 |
| #atlas conf 2019 018 | 2   | Search for direct stau production in events with two hadronic tau leptons                 | 139  |
| atlas 1908 08215     | 16  | charginos/sleptons, 2 leptons + MET                                                       | 139  |
| atlas 1909 08457     | 5   | search for squarks and gluinos with same-sign leptons                                     | 139  |
| atlas conf 2019 020  | 2   | Search for chargino-neutralino production with mass splittings near the electroweak scale | 139  |
| atlas 1803 02762     | 20  | Search for electroweakino production in final states with two or three leptons»           | 36.1 |
| atlas_2101_01629     | 32  | squarks/gluinos, 1 lepton, jets, MET                                                      | 139  |
| atlas_conf_2020_048  | 26  | Search for dark matter with monojets                                                      | 139  |
| atlas_2004_14060     | 9   | stops, leptoquarks, 0 lepton                                                              | 139  |
| atlas_1908_03122     | 10  | 0 leptons, 3 or more b-jets, sbottoms                                                     | 139  |
| atlas 1911 12606     | 87  | search for sleptons and electroweakinos with soft leptons                                 | 139  |
| atlas_1807_07447     | 633 | general search for new phenomena                                                          | 3.2  |
| atlas_2103_11684     | 2   | Search for SUSY in events with four or more leptons (gravitino SR)                        | 139  |
| atlas_2004_10894     | 12  | EWino search in Higgs (diphoton) and met                                                  | 139  |
| atlas_2106_09609     | 21  | Search for RPV SUSY in final states with leptons and many jets                            | 139  |
| atlas_1911_06660     | 2   | search for direct stau production                                                         | 139  |
| atlas_2010_14293     | 78  | search for squarks and gluinos in MET_jet final states                                    | 139  |
| atlas_2211_08028     | 22  | search for gluinos decaying via 3rd gen; multi b-jets and MET                             | 139  |
| atlas_2106_01676     | 72  | electroweakinos, 3 leptons, WZ, Wh, on+off-shell                                          | 139  |

#### CheckMATE: CMS analyses

| #Name              | NSR | Description                                                | Lumi  |
|--------------------|-----|------------------------------------------------------------|-------|
| cms_pas_sus_15_011 | 47  | CMS, 13 TeV, 2 leptons + jets + MET                        | 2.2   |
| cms_sus_16_039     | 158 | electrowekinos in multilepton final state                  | 35.9  |
| cms sus 16 025     | 14  | electroweakino and stop compressed spectra                 | 12.9  |
| cms sus 16 048     | 20  | two soft opposite sign leptons                             | 35.9  |
| cms sus 19 005     | 303 | hadronic final states with MT2                             | 137.0 |
| cms 1908 04722     | 186 | hadronic final states with HT, post-fit and simple fitting | 137.0 |
| cms 2107 13201     | 88  | monojet with multibin                                      | 137.0 |
| cms_2205_09597     | 40  | search for electroweakinos in hadronic final states        | 137.0 |

# The list shorter than for ATLAS but expanding, with three new full luminosity searches added recently

#### Contents

- 1. From simplified models to recasting
- 2. CheckMATE overview
- 3. Implementation of searches with multibin SRs
- 4. Application: pushing limits for electroweakinos
- 5. Summary and outlook

### ATLAS multibin searches

- Implementation using pyhf
- Most searches available with full and simplified likelihoods
- Full likelihood evaluation tends to be time consuming, one can opt for CLs-only calculation
- Full hadronic search 2010.14293 has all control regions implemented

| Name             | Description                                                                                                           | $\# SR,N_{\rm bin}$ | Full         |
|------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| atlas_1908_03122 | Search for bottom squarks in final states with Higgs bosons, b-jets and $E_{\rm T}^{\rm miss}$                        | 2, 7                | $\checkmark$ |
| atlas_1908_08215 | Search for electroweak production of charginos and sleptons in final states with 2 leptons and $E_{\rm T}^{\rm miss}$ | 4, 52               | $\checkmark$ |
| atlas_1911_06660 | Search for direct stau production in events with two<br>hadronic taus                                                 | 1, 2                | $\checkmark$ |
| atlas_1911_12606 | Search for electroweak production of supersymmetric par-<br>ticles with compressed mass spectra                       | 11, 78              | $\checkmark$ |
| atlas_2004_14060 | Search for stops in hadronic final states with $E_{\rm T}^{\rm miss}$                                                 | 2, 9                | x            |
| atlas_2010_14293 | Search for squarks and gluinos in final states with jets<br>and $E_{\rm T}^{\rm miss}$                                | 3,60                | $\checkmark$ |
| atlas_2101_01629 | Search for squarks and gluinos in final states with one isolated lepton, jets, and $E_{\rm T}^{\rm miss}$             | 8, 32               | $\checkmark$ |
| atlas_2106_01676 | Search for chargino–neutralino production in final states with 3 leptons and $E_{\rm T}^{\rm miss}$                   | 2, 72               | $\checkmark$ |

ATL-PHYS-PUB-2021-038 ATL-PHYS-PUB-2019-029

#### CMS multibin searches

| Name           | Description                                                                                                                                            | $\mathrm{N}_{\mathrm{bin}}$ |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| cms_1908_04722 | Search for supersymmetry in final states with jets and $E_{\rm T}^{\rm miss}$                                                                          | 174                         |
| cms_1909_03460 | Search for supersymmetry with $M_{\rm T2}$ variable in final states with jets and $E_{\rm T}^{\rm miss}$                                               | 282                         |
| cms_2107_13021 | Search for new particles in events with energetic jets and large $E_{\rm T}^{\rm miss}$                                                                | 66                          |
| cms_2205_09597 | Search for production of charginos and neutralinos in final states con-<br>taining hadronic decays of $WW$ , $WZ$ , or $WH$ and $E_{\rm T}^{\rm miss}$ | 35                          |

• Implementation with ROOT workspace in python3

$$\mathcal{L}_{S}(\mu, \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{(\mu \cdot s_{i} + b_{i} + \theta_{i})^{n_{i}} e^{-(\mu \cdot s_{i} + b_{i} + \theta_{i})}}{n_{i}!} \cdot \exp\left(-\frac{1}{2}\boldsymbol{\theta}^{T} \mathbf{V}^{-1} \boldsymbol{\theta}\right)$$

• Optional constraint for signal numbers: for many bins it's difficult to get reasonable statistics which results in large MC-related errors

#### CMS multibin searches

Additional features:

- <u>Spey</u> wrapper very good stability compared to ROOT implementation, good agreement between both methods
- Possible extension to combine different searches/experiments with Spey
- Some flexibility left regarding error treatment

#### Validation



#### Validation



#### Contents

- 1. From simplified models to recasting
- 2. CheckMATE overview
- 3. Implementation of searches with multibin SRs
- 4. Application: pushing limits for electroweakinos
- 5. Summary and outlook

## Light SUSY dark matter

 bino-wino: almost mass degenerate winos and bino LSP

• wino LSP:  $M_2 \ll M_1, \mu$ , two quasi-degenerate states:  $\chi_1^0, \chi_1^{\pm}$ 







- higgsino LSP,  $\mu \ll M_1, M_2$ , three quasi-degenerate states:  $\tilde{\chi}_1^0, \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$
- mass splittings of order 100–1000 MeV



### Search strategies

- for sufficiently small mass gap a long-lived massive particle travels macroscopic distance in the detector
- possible signatures: displaced vertex, heavy charged track, displaced jet etc.
- for a larger mass difference (> 1 GeV) look for soft decay products
- at HL the gap remains
- for winos no exclusion in soft l search!



## "Multijet" search by ATLAS

- we recast with CheckMATE a general search for squarks and gluinos, arXiv:2010.14293, in total 70 signal regions
- basic (preselection) signal requirements:
  - no electrons or muons
  - 2-6 jets
  - large missing energy > 300 GeV
  - hard leading jet  $p_T > 200 \text{ GeV}$
  - large effective mass > 800 GeV
- note some overlap of the final states with "mono"-jet
- we focus on bins with the largest sensitivity (originally intended for squark pair production):
  - 2–3 jets,  $p_{\mathrm{T}}^{\mathrm{jet1}}, p_{\mathrm{T}}^{\mathrm{jet2}} > 250~\mathrm{GeV}$
  - effective mass > 1600 GeV
  - $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 16\sqrt{{\rm GeV}}$
  - perform a multibin fit using HistFitter

#### Also try CMS multijet

- CMS-SUS-19-006 with multibin for different selections wrt ATLAS
  - $N_{\text{jet}} \ge 2$ , where jets must appear within  $|\eta| < 2.4$ ;
  - $H_{\rm T}$  > 300 GeV, where  $H_{\rm T}$  is the scalar  $p_{\rm T}$  sum of jets with  $|\eta|$  < 2.4;
  - $H_{\rm T}^{\rm miss}$  > 300 GeV, where  $H_{\rm T}^{\rm miss}$  is the magnitude of  $\vec{H}_{\rm T}^{\rm miss}$ , the negative of the vector  $p_{\rm T}$  sum of jets with  $|\eta| < 5$ ; an extended  $\eta$  range is used to calculate  $H_{\rm T}^{\rm miss}$  so that it better represents the total missing momentum in an event;
  - $H_T^{\text{miss}} < H_T$ , because events with  $H_T^{\text{miss}} > H_T$  are likely to arise from mismeasurement;
  - no identified isolated electron or muon candidate with  $p_{\rm T} > 10 \,{\rm GeV}$ ;
  - no isolated track with  $m_{\rm T} < 100 \,\text{GeV}$  and  $p_{\rm T} > 10 \,\text{GeV}$  ( $p_{\rm T} > 5 \,\text{GeV}$  if the track is identified as a PF electron or muon), where  $m_{\rm T}$  is the transverse mass [52] formed from  $\vec{p}_{\rm T}^{\rm miss}$  and the isolated-track  $p_{\rm T}$  vector, with  $\vec{p}_{\rm T}^{\rm miss}$  the negative of the vector  $p_{\rm T}$
  - $\Delta \phi_{H_T^{\text{miss}},j_i} > 0.5$  for the two highest  $p_T$  jets  $j_1$  and  $j_2$ , with  $\Delta \phi_{H_T^{\text{miss}},j_i}$  the azimuthal angle between  $\vec{H}_T^{\text{miss}}$  and the  $p_T$  vector of jet  $j_i$ ; if  $N_{\text{jet}} \ge 3$ , then, in addition,  $\Delta \phi_{H_T^{\text{miss}},j_3} > 0.3$  for the third-highest  $p_T$  jet  $j_3$ ; if  $N_{\text{jet}} \ge 4$ , then, yet in addition,  $\Delta \phi_{H_T^{\text{miss}},j_4} > 0.3$  for the fourth-highest  $p_T$  jet  $j_4$ ; all considered jets must have  $|\eta| < 2.4$ ; these requirements

#### Head-to-head comparison

MT2 search preliminary results also very strong (not shown in the plot)



#### Contents

- 1. From simplified models to recasting
- 2. CheckMATE overview
- 3. Implementation of searches with multibin SRs
- 4. Application: pushing limits for electroweakinos
- 5. Summary and outlook

#### Summary and Outlook

- Multibin limits available in 12 ATLAS and CMS searches
- Good agreement with published results
- In most cases reasonable evaluation time for parameter space scans
- Extension to combinations of different searches/experiments straightforward
- New limits from hadronic final states on electroweakinos are very promising – important for future colliders
- More to come from CMS MT2 hadronic search





# **Norway** grants

The research leading to the results presented in this talk has received funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707



#### Understanding the Early Universe: interplay of theory and collider experiments

Joint research project between the University of Warsaw & University of Bergen

#### Comparison of different error treatment

