

The state of the Art

NLC/GLC development by SLAC/KEK/FNAL

NLC working point: 65 MV/m, 400 ns, 1 trip in 10 hours

A few comments

o High temperature brazing results in very clean structures (machining, QC, etching, clean handling, brazing, sealed N₂)

- o It seemed the grain size played role (bigger = better)
- o Test of a bigger number of structures essentiel
- o No difference between different copper suppliers
- o No difference between diamond and conventional machining for high gradient test
- o Venting experiments showed very robust behaviour of copper structures

Operation History of Six Test Structures

Number of Breakdowns to Process to ≈ 75 MV/m with 240 ns Pulses

T53VG3/5 Breakdown Rate -vs- Gradient (Last 500 hours of Run, 240 & 400 ns Pulse Widths, Raw Counts Summed)

Structure Breakdown Rate Comparison

Structure	Gradient (MV/m) / Pulse Width (ns)	Input Coupler Rate (#/hr)	Body Rate (#/hr)	Output Coupler Rate (#/hr)	
DS2S	70/240	4.7*	0.4+	< 0.1	
T20VG5	70/240	1.1	0.9	1.1	
T105VG5	70/240	1.7*	0.3+	< 0.1	
T53VG5R	73/240	0.4	0.2	0.2	
T53VG3R	70/480	0.7	< 0.1	0.3	
T53VG3RA	73/400	5.2	0.2	0.3	
T53VG3F	73/400	0.16	0.3	1.9	

T53VG3R: Fractional Missing Energy -vs- Breakdown Location

Structure Damage

T105VG5 Damage and Missing RF Energy Distributions

T53VG3MC (Mode Converter) Structure

To Test Low Peak Magnetic Field Couplers, Use:

- T53VG3 Body Design
- Mode-Converter Input Coupler
- Fat-Lip Output Coupler

Effect of Dispersion on RF Pulse Propagation in H60VG3

Breakdown Statistics for H60VG3-6C at 65 MV/m, 400 ns

'Spitfest' Statistics for H60VG3S18 at 400 ns

Time Between Trips (Minutes) (Times > 30 Plotted at 30)

H60VG3R17 Full Processing History

(9200 Breakdowns)

Dark-currents

Input Power

H90vg3N 0 H60vg3N-6C 0 0 0 Breakdown rate per hour OC 0 **10**¹ 90 Θ P 0 000 0 0 Q 10⁰ 0 0 0 00 **10**⁻¹ <u>0</u> 60 50 70 80 90 100 110 120 Input Power (MW)

Steffen Döbert, SLAC/NLC

Breakdown-rates vs input power

Surface Field

Breakdown-rates vs surface field H90vg3N 0 H60vg3N-6C 0 D 0 0-Breakdown rate per hour **10**¹ <u>80</u> 0 0 0 10⁰ O 00 **10**⁻¹ 130 140 150 160 170 180 190 Maximum surface field (MV/m)

Standing wave structures

Length:	2x20 cm		
Phase advance:	180 deg		
Es/Eacc:	2.05		
P _{in} (55 MV/m):	9 MW		
Coupler:	rounded		
Preparation:	H ₂ -bonding/brazing Vacuum bake		

Results - SW20a375

Input RF pulse

Reflected Signals FME = 0.94 DS = 0 DP = 142 DT = 0 EV = 12

BD-rates - SW20a375

NLC-goal achieved at 55 MV/m!

H-type-performance Damage

Preliminary results !

- Inline taper helps
- Damage appears correlated to surface field distribution

Hot topic in working group

Breakdown location 8-pack

20 30 Cell No

Breakdown location 8-pack

Breakdown location 8-pack 600 _[Es x t H60vg3R18 H60vg3S17 H60vg4S17 350 L 0 Cell number H60vg3R17 FXB-007 0└ -10 0└ -10

Cell No

Cell No

Phase advance

Iris thickness

Average Wuensch factor

T53's efficiencies with simple beam loading

Structure	Pin (MW)	Emax (MV/m)	Eavg (MV/m)	N 10 ⁹	Nb	pL (ns)	η %
T53 correct (Alexej)	135	120	80	7.4	34	101	11.6
T53 const impedance approximation	135	115	78	7.4	34	101	12.3
Same as above	135	115	100	3.1	34	101	6.6
Same as above	135	115	100	3.1	80	124	12.5
T53 of 0.3 m same average vg	135	125	102	7.4	100	103	26.1