Joint Universities Accelerator School JUAS 2024 20. – 26. February 2024

Normal-conducting accelerator magnets Lecture 5: Analytical design

Thomas Zickler CERN

Electro-magnetic design is an iterative process:

- Field strength (gradient) and magnetic length
- Integrated field strength (gradient)
- Aperture and ,good field region'
- Field quality:
 - field homogeneity
 - maximum allowed multi-pole errors
 - settling time (time constant)
- Operation mode: continous, cycled
- Electrical parameters
- Mechanical dimensions
- Cooling requirements

A magnet is not a stand-alone device!

Magnet Components

Alignment targets <u>Yoke</u> <u>Coils</u> Sensors **Cooling circuit** Connections Support

Beam rigidity

Beam rigidity (*B*
$$\rho$$
) [Tm]: $(B\rho) = \frac{p}{q} = \frac{1}{qc} \sqrt{E_k^2 + 2E_k E_0}$

- *p*: particle momentum [kg m s⁻¹]
- q: particle charge [C or A s]
- *c*: speed of light [m s⁻¹]
- E_k : kinetic beam energy [eV]
- E_0 : particle rest mass energy [eV] (0.51 MeV for electrons; 938 MeV for protons)

"...resistance of the particle beam against a change of direction when applying a bending force..."

Di

Magnetic induction

pole ber	$B = \frac{(B\rho)}{2}$	
<i>B</i> :	Flux density or magnetic induction (vector) [T]	r_M
<i>r_M</i> :	magnet bending radius [m]	
uadrupo	$B' = (B\rho)k$	

Qu quadrupole strength [m⁻²] k:

Sextupole differential gradient $B''[T/m^2]$: $B^{\prime\prime} = (B\rho)j$ *j*: sextupole strength [m⁻³]

Excitation current in a dipole

JUas

 $B'r^2$

Choosing the shown integration path gives: $NI = \oint \vec{H} \cdot d\vec{s} = \int_{S^1} \vec{H_1} \cdot d\vec{s} + \int_{S^2} \vec{H_2} \cdot d\vec{s} + \int_{S^2} \vec{H_3} \cdot d\vec{s}$

For a quadrupole, the gradient $B' = \frac{dB}{dr}$ is constant

and
$$B_y = B'x$$
 $B_x = B'y$

Field modulus along
$$s_1$$
: $|H(r)| = \sqrt{H_x^2 + H_y^2} = \frac{B'}{\mu_0}\sqrt{x^2 + y^2} = \frac{B'}{\mu_0}n$

Neglecting *H* in
$$s_2$$
 because: $R_{M,s2} = \frac{s_2}{\mu_{iron}} << \frac{s_1}{\mu_{air}}$

and along
$$s_3$$
: $\int_{s_3} \overline{H_3} \cdot d\overline{s} = 0$
Leads to: $NI \approx \int_0^R H(r) dr = \frac{B'}{\mu_0} \int_0^R r \cdot dr$ $NI_{(per \, pole)} = \frac{B' r^2}{2\mu_0}$

Normal-conducting

Aperture size

"...good-field region: central region around the theoretical beam trajectory where the field quality has to be within certain tolerances..."

Max. beam size envelope (typical 3-sigma)

- Lattice functions: beta functions and dispersion
- Geometrical transverse emittances (energy depended)
- Momentum spread

Closed orbit distortions (few mm)

It is easy to derive an ideal mathematical pole configuration for a specific field configuration

In practice, poles are not ideal: finite width and end effects result in (allowed) multipole errors disturbing the fundamental field

The uniform field region is limited to a small fraction of the pole width:

Estimate the size of the poles and calculate the resulting fields numerically

Better approach: calculate the necessary pole overhang

$$x_p = \frac{h}{2} f\left(\frac{\Delta B}{B_0}\right)$$

$$f\left(\frac{\Delta B}{B_0}\right)_{unopt.} = -0.36\ln\frac{\Delta B}{B_0} - 0.90$$

*X*_p: pole overhang: excess pole beyond the edge of the GFR

Pole optimization

To improve the field quality in the GFR we can either increase the pole width or optimize the pole profile by *,*shimming':

- Add or remove material on the pole profile (shims)
- Taper or round-off pole edges to reduce saturation
- Often done by trial-and-error

For an optimized pole:

$$f\left(\frac{\Delta B}{B_0}\right)_{opt.} = -0.14\ln\frac{\Delta B}{B_0} - 0.25$$

Please note: the final field quality will depend on the longitudinal pole profile, coil ends, mechanical tolerances, assembly errors, possible inhomogeneities in the magnetic properties, and saturation

Yoke dimensioning

2.0

Total flux in the return yoke includes the flux from the aperture and the stray flux outside the gap

$$\Phi = \int_{a} B \cdot da \approx B_{gap}(w + 2h) \, l_{eff}$$

$$B_{leg} \cong B_{gap} \frac{w + 2h}{w_{leg}} \quad \text{(ignoring the 3^{rd} dimension)}$$

Avoid saturation in the yoke

0.0

Effective length

Coming from ∞ , *B* increases towards the magnet center:

Effective length > yoke length

Approximation for a dipole: $l_{eff} \approx l_{yoke} + h$

Approximation works only if:

- pole length >> gap height
- saturation is negligible

For straight magnets, the horizontal pole width has to be enlarged by the sagitta:

$$s = r_M(1 - \cos(\frac{\alpha}{2}))$$

Ampere-turns *NI* are determined, but for the coil design, the number of turns *N* and the current density *J* need to be found

The determined ampere-turns *NI* have to be divided into *N* and current *I*

Large N = low current = high voltage

- Small terminals
- Small conductor cross-section
- Thick insulation for coils and cables
- Less good filling factor in the coils
- Low power transmission loss

Small N = high current = low voltage

- Large terminals
- Large conductor cross-section
- Thin insulation in coils and cables
- Good filling factor in the coils
- High power transmission loss

The number of turns *N* are chosen to match the impedances of the power converter and connections

A sensible choice of the current density *J* is crucial for a robust and economical magnet design:

Once magnet cross-section and the yoke length are fix, the ohmic power loss P_{Ω} depends mainly on the current density J

$$P_{\Omega,dip} = \rho \frac{Bh}{\mu_0} J l_{avg} \qquad \qquad P_{\Omega,quad} = 2\rho \frac{B'r^2}{\mu_0} J l_{avg}$$

The current density *J* has a direct impact on coil size, coil cooling, power converter choice, operation costs and investment costs

Basic relations:

$R \propto N^2 J$	$U \propto NJ$	$P_{\Omega} \propto J$
Coil resistance:	Ohm's law:	Ohmic losses:
$R = \frac{N \ l_{avg}}{a_c \ \sigma}$ Resistance $R[\Omega]$ El. conductivity σ [S m ⁻¹] Number of turns per coil N [] Avg. turn length I_{avg} [m] Conductor cross-section a_{con} [m ²]	U = R I Voltage drop per magnet $U[V]$ Coil resistance $R[\Omega]$ Current $I[A]$	$P_{\Omega} = U I = R I^{2}$ Power losses (ohmic) P[W] Voltage drop $U[V]$ Current $I[A]$ Resistance $R[\Omega]$

Attention: Electrical resistance is temperature depending

$$R(T) = R(T_0) \left(1 + \alpha \left(T_{avg} - T_0 \right) \right)$$

Coil cooling

Air cooling by natural convection:

- Current density $J < 2 \text{ A mm}^{-2}$ for small, thin coils
- Cooling enhancement
 Heat sink with enlarged radiation surface
 Forced air flow (cooling fan)
- Only for magnets with limited strength (e.g. correctors)

Direct water cooling:

- Typical current density $J \le 10 \text{ A mm}^{-2}$
- Requires demineralized water (low conductivity) and hollow conductor profiles

Indirect water cooling:

- Current density $J \le 3$ A mm⁻²
- Tap water can be used

Normal-conductir

Practical recommendations and canonical values:

- Water cooling: 2 A mm⁻² $\leq J \leq 10$ A mm⁻²
- Pressure drop: $1 \le \Delta P \le 10$ bar (possible up to 20 bar)
- Low pressure drop might lead to more complex and expensive coil design
- Flow velocity should be high enough, so flow is turbulent (Reynolds number Re > 4000)
- Flow velocity $v_{avg} \le 3 \text{ m s}^{-1}$ to avoid erosion and vibrations
- Acceptable temperature rise: $\Delta T \le 30^{\circ}$ C but for advanced stability: $\Delta T \le 15^{\circ}$ C

Cooling water properties:

- For the cooling of hollow conductor coils demineralised water is used (exception: indirect cooled coils)
- Water quality is essential for performance and reliability of the coil (corrosion, erosion, short circuits)
- Resistivity > $0.1 \times 10^6 \Omega m$
- pH between 6 and 6.5 (= neutral)
- Dissolved oxygen below 0.1 ppm
- Filters to remove particles and loose deposits to avoid cooling duct obstruction

Normal-conducting accelerator

Direct water cooling

Useful simplified formulas using water as cooling fluid:

Water flow Q [litre/min] necessary to remove power P_{Ω} : $Q = 14.5 \frac{P_{\Omega}}{\Lambda T}$

- P_{Ω} : dissipated power [kW]
- ΔT : temperature increase [°C]

Average water velocity v_{avg} [m s⁻¹] in a round tube: $v_{avg} = 16.67 \frac{Q}{a_b} = 66.67 \frac{Q}{d_b^2 \pi}$

 $a_{\rm h} = \frac{\pi d^2}{4}$: bore cross-section [mm²]

*d*_h : hydraulic diameter [mm]

Pressure drop ΔP [bar]: $\Delta P = 53.32 \frac{Q^{1.75}}{d_h^{4.75}} l_h$ (from Blasius' law)

*I*_h: cooling circuit length [m]

Reynolds number Re []: $Re = \frac{v_{avg} d_h}{v}$

- *Re:* dimensionless quantity used to help predict similar flow patterns in different fluid flow situations
- v: kinematic viscosity of coolant is temperature depending, for simplification it is assumed to be constant ($6.58 \cdot 10^{-7} \text{ m}^2 \text{ s}^{-1}$ for water at 40°C)
- Note: for convenience practical (non-SI) units are used in the formulae of this slide

Design recipe for cooling circuits

Already determined: current density J, current I, and number of turns N

- 1. Calculate the conductor net cross-section from the current density and the current.
- 2. From the number of turns and the average turn length compute the coil resistance.
- 3. Define the allowed temperature rise and correct the coil resistance for the average conductor temperature before computing the ohmic losses in the coil.
- 4. Calculate the required flow rate to evacuate the total ohmic losses from the coil by keeping the temperature increase within the defined limit.
- 5. For a given cooling duct diameter and the flow rate, determine the required pressure drop. Alternatively, calculate the diameter of the cooling duct from the flow rate and a give pressure drop.
- 6. If necessary, change the pressure drop, the hydraulic diameter or the number of cooling circuits per coil and go back to point 5.
- 7. Check that the coolant velocity remains below the limit where erosion phenomena will become apparent.
- 8. Finally, verify that the Reynolds number is in the turbulent flow regime for which Blasius equations holds. The Reynold number should be between 4000 and 100 000.

Cost estimate

Production specific tooling:

10 to 20 k€/tooling

Material:

Steel sheets: 1.0 - 1.5 € /kg

Copper conductor: 10 to 20 € /kg

Yoke manufacturing:

Dipoles: 6 to 10 € /kg (> 1000 kg)
Quads/Sextupoles: 50 to 80 € /kg (> 200 kg)
Small magnets: up to 300 € /kg

Coil manufacturing:

Dipoles: $30 \text{ to } 50 \notin /\text{kg} (> 200 \text{ kg})$ Quads/Sextupoles: $65 \text{ to } 80 \notin /\text{kg} (> 30 \text{ kg})$ Small magnets: up to $300 \notin /\text{kg}$

Contingency:

10 to 20 %

Magnet	Magnet type	Dipole
	Number of magnets (incl. spares)	18
	Total mass/magnet	8330 kg
Fixed costs	Design	14 kEuros
	Punching die	12 kEuros
	Stacking tool	15 kEuros
	Winding/molding tool	30 kEuros
Yoke	Yoke mass/magnet	7600 kg
	Used steel (incl. blends)/magnet	10000 kg
	Yoke manufacturing costs	8 Euros/kg
	Steel costs	1.5 Euros/kg
Coil	Coil mass/magnet	730 kg
	Coil manufacturing costs	50 Euros/kg
	Cooper costs (incl. insulation)	12 Euros/kg
Total costs	Total order mass	150 Tonnes
	Total fixed costs	71 kEuros
	Total Material costs	428 kEuros
	Total manufacturing costs	1751 kEuros
	Total magnet costs	2250 kEuros
	Contingency	20 %
	Total overall costs	2700 kEuros

NOT included: magnetic design, supports, cables, water connections, alignment equipment, magnetic measurements, transport, installation Prices for **2012**

ccelera

Costs and optimization

Focus on economic design!

Design goal: Minimum total costs over projected magnet lifetime by optimization of capital (investment) costs against running costs (power consumption)

Power \propto *current desity* Attention:

Decreasing current density means:

- increasing coil cross section
- increasing material (coil & yoke) cost
- increasing manufacturing cost But:
- decreasing capital costs for power converter and cooling system
- decreasing operation costs

Cost optimization

CÉRN

Thanks for your attention...