Machine Learning for Higgs CP properties

António Jacques Costa

LEVERHULME TRUST _____

The University of Manchester

LHC EFT WG, Area 3

24th October 2023

Motivation

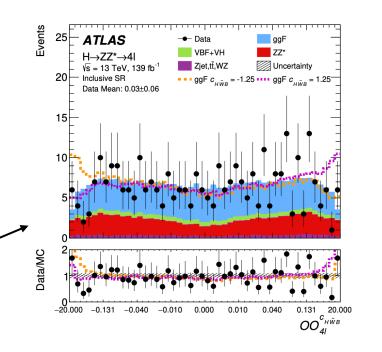
• CP violating operators affecting the Higgs/multiboson interactions can be probed via Effective Field Theory:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_i rac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)}$$

 c_i/Λ^2 the Wilson coefficients, Λ the scale of new physics
$$\begin{split} \widetilde{\mathcal{O}}_{\Phi\widetilde{B}} &= \Phi^{\dagger}\Phi B^{\mu\nu}\widetilde{B}_{\mu\nu}\,,\\ \widetilde{\mathcal{O}}_{\Phi\widetilde{W}} &= \Phi^{\dagger}\Phi W^{i\,\mu\nu}\widetilde{W}^{i}_{\mu\nu}\,,\\ \widetilde{\mathcal{O}}_{\Phi\widetilde{W}B} &= \Phi^{\dagger}\sigma^{i}\widetilde{W}^{i\,\mu\nu}B_{\mu\nu}\,. \end{split}$$

- Beyond-the-SM amplitude is then given by: $|\mathcal{M}_{BSM}|^2 = |\mathcal{M}_{SM}|^2 + 2\text{Re}\{\mathcal{M}_{SM}\mathcal{M}_{d6}^*\} + |\mathcal{M}_{d6}|^2$
- Interference term leads to asymmetries in CP-odd observables

• Possible CP-odd observables


- Statistically optimal observables
- Angular observables less sensitivity but easier implementation
- Machine-learning observables attempt to recover best sensitivity while keeping feasibility

Statistically optimal observables

 Statistically optimal observable (<u>PhysRevD.45.2405</u>, <u>Phys. Lett. B 306 (1993)</u> <u>411</u>, <u>arXiv:hep-ph/9603207</u>) is defined as:

$$\mathcal{O}_{\text{opt}} = \frac{2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}})}{|\mathcal{M}_{\text{SM}}|^2} , \qquad \overset{2 \operatorname{Re}(\mathcal{M}_{\text{SM}}^* \mathcal{M}_{\text{CP-odd}}) = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) 2 \operatorname{Re}((\mathcal{M}_{\text{SM}}^{ij \to klH})^* \mathcal{M}_{\text{CP-odd}}^{ij \to klH})}{|\mathcal{M}_{\text{SM}}|^2 = \sum_{i,j,k,l} f_i(x_1) f_j(x_2) |\mathcal{M}_{\text{SM}}^{ij \to klH}|^2}.$$

- Needs sum over all possible flavour configurations $ij \rightarrow klH$ weighted by PDF
- Calculated from the four-momentum of the Higgs boson candidate and the two leading jets in VBF configuration or from the four-momenta of the decay objects
- Highest sensitivity to small values of the parameter of interest

- $h \rightarrow 4\ell$ differential cross-section (corrected for detector inefficiency and resolution effects) as function of 00 (arXiv:2304.09612)
- Confidence intervals using *OO* with an integrated luminosity of 139 fb-1

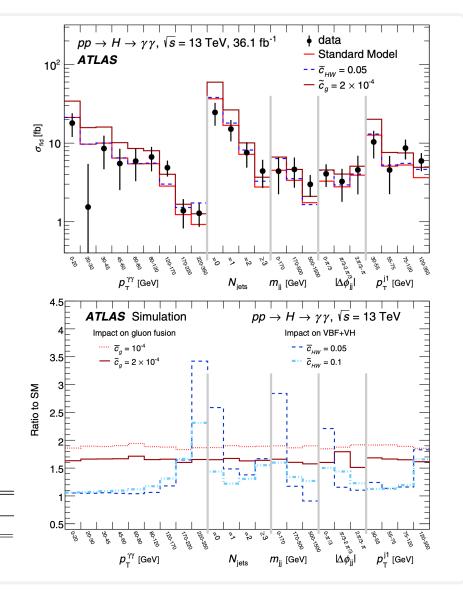
EFT coupling	Expected		Observed	
parameter	68% CL	95% CL	68% CL	95% CL
$c_{H\widetilde{B}}$	[-0.18, 0.19]	[-0.37, 0.37]	[-0.42, 0.31]	[-0.61, 0.54]
$c_{H\widetilde{W}B}$	[-0.36, 0.36]	[-0.72, 0.72]	[-0.56, 0.53]	[-0.97, 0.98]
$c_{H\widetilde{W}}$	[-0.63, 0.63]	[-1.26, 1.28]	[-0.07, 1.09]	[-0.81, 1.54]

Angular observables

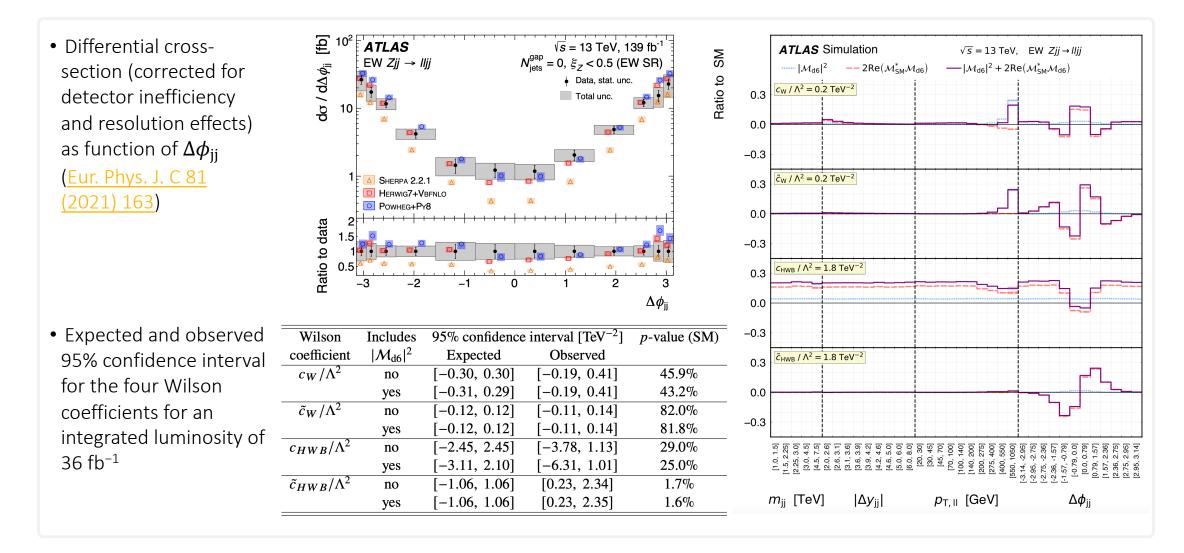
• $\phi_{4\ell}$ (PhysRevD.94.055023, PhysRevD.86.095031) in $h \rightarrow 4\ell$

$$\Phi = rac{oldsymbol{q}_1 \cdot (oldsymbol{\hat{n}}_1 imes oldsymbol{\hat{n}}_2)}{|oldsymbol{q}_1 \cdot (oldsymbol{\hat{n}}_1 imes oldsymbol{\hat{n}}_2)|} imes \cos^{-1}\left(-oldsymbol{\hat{n}}_1 \cdot oldsymbol{\hat{n}}_2
ight)$$

• with the normal vectors to the planes defined as

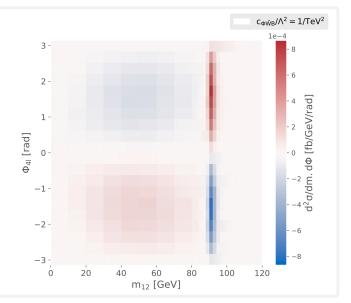

$$m{\hat{n}}_1 = rac{m{q}_{11} imes m{q}_{12}}{|m{q}_{11} imes m{q}_{12}|} \qquad m{\hat{n}}_2 = rac{m{q}_{21} imes m{q}_{22}}{|m{q}_{21} imes m{q}_{22}|}$$

- and $q_{\alpha i}$ being the three-momentum of the lepton/antilepton *i* from the Z_{α} boson decay, and $q_{\alpha} = q_{\alpha 1} + q_{\alpha 2}$ being the three-momentum of the Z_{α} boson
- $\Delta \phi_{jj} = \phi_{j1} \phi_{j2} ($ <u>PhysRevLett.88.051801</u>)

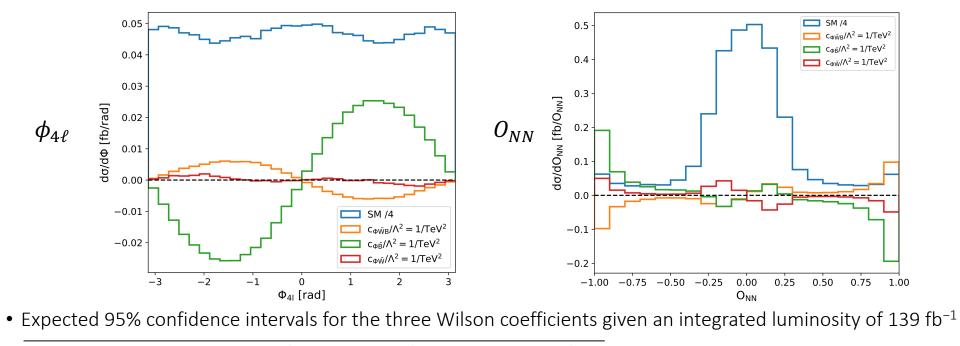

• with two highest transverse-momentum jets ordered by $y_{j1} > y_{j2}$

- Sensitive to anomalous weak-boson self-interactions
- Expected 95% confidence intervals using $\Delta \phi_{jj}$ for an integrated luminosity of 36 fb⁻¹ (<u>PhysRevD.98.052005</u>)

Coefficient	Observed 95% CL limit	Expected 95% CL limit
\widetilde{c}_{HW}	[-0.16, 0.16]	[-0.14, 0.14]

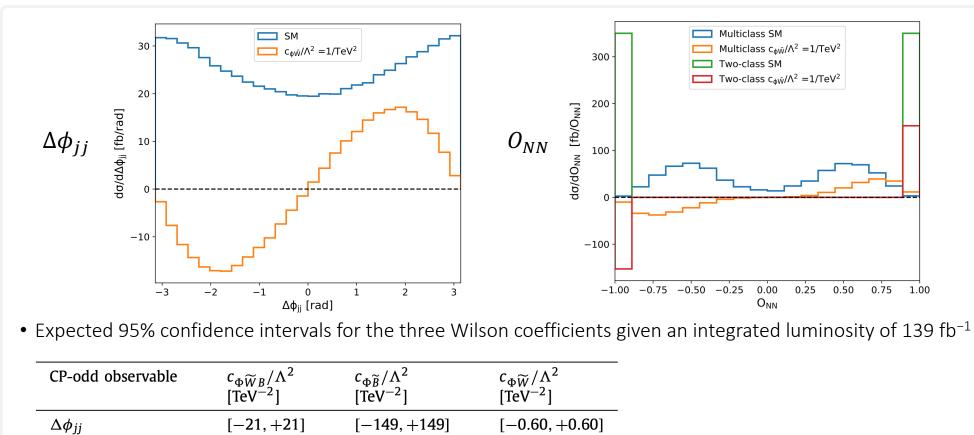


Angular observables: Electroweak Zjj production



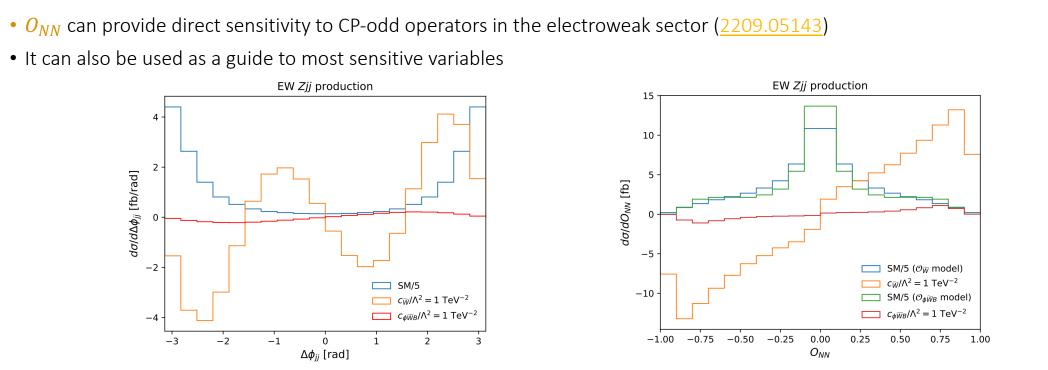
Neural network-based observable: Method

- Differential cross-section as function of NN-constructed CP-odd observable (Phys. Lett. B 832 (2022) 137246)
- Events generated for $h \rightarrow 4\ell$ and VBF h + 2 jets for SM and interference induced by dim-6 CP-odd operators in SMEFTsim
- Multi-class model trained in interference and pure Standard Model events, defining the probabilities
 - $P_+(P_-)$, P_{SM} as the probability of an event being a positive (negative)-weighted interference or SM event
 - $P_+ + P_- + P_{SM} = 1$
- NN-constructed observable defined then as:
 - $O_{NN} = P_+ P_-$
- Inputs to NN including lepton/jet four vectors and derived variables
- Importance of each variable evaluated via feature importance techniques
 - Evaluates decrease in accuracy when each input variable is randomly shuffled
- $\phi_{4\ell}$ and m_{12} (mass of lepton-antilepton pair) are the most important variables in $h\to 4\ell$ production
 - Sign flip due to different contributions from the $h\to ZZ$, $h\to\gamma\gamma$ and $h\to Z\gamma$ dim-6 amplitudes in on- and off-shell regions
- Sensitivity in VBF h+2 jets driven by $\Delta \phi_{
 m jj}$


Neural network-based observable: $h \rightarrow 4\ell$ results

CP-odd observable	$c_{\Phi \widetilde{W}B}/\Lambda^2$ [TeV ⁻²]	$c_{\Phi \widetilde{B}}/\Lambda^2$ [TeV ⁻²]	$c_{\Phi \widetilde{W}}/\Lambda^2$ [TeV ⁻²]
$\Phi_{4\ell}$	[-6.2, 6.2]	[-1.4, 1.4]	[-30, 30]
$\Phi_{4\ell}$, m_{12}	[-1.9, 1.9]	[-0.85, 0.85]	[-3.7, 3.7]
O _{NN} (binary)	[-1.5, 1.5]	[-0.75, 0.75]	[-3.0, 3.0]
O _{NN} (multi-class)	[-1.4, 1.4]	[-0.71, 0.71]	[-2.7, 2.7]

- Factor 2 to 10 improvement using O_{NN} in sensitivity to Wilson coefficients
- Considerable gain can be recovered by two-dimensional fit to $\phi_{4\ell}$ and m_{12}


Neural network-based observable: VBF h + 2 jets results

O _{NN} (binary)	[-11, +11]	[-43, +43]	[-0.66, +0.66]
O _{NN} (multi-class)	[-10, +10]	[-36, +36]	[-0.42, +0.42]

- Factor 1.5 to 4 improvement using O_{NN} in sensitivity to Wilson coefficients
- Full kinematic information accessible in multi-class providing best performance

Neural network-based observable: Electroweak final states

- O_{NN} more effective at separating the positively and negatively-weighted interference contributions beyond $\Delta \phi_{jj}$ by accessing lepton kinematics
- Expected 95% confidence interval for the targeted Wilson coefficients given an integrated luminosity of 139 fb⁻¹
- Factor of up to two improvements in expected limits

Process	CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [{ m TeV}^{-2}]$	$c_{\widetilde{W}}/\Lambda^2~[{ m TeV}^{-2}]$
	$\Delta \phi_{jj}$	[-1.05, 1.05]	[-0.081, 0.081]
${ m EW}~Zjj$	O_{NN} (multi-class)	[-0.83, 0.83]	[-0.047, 0.047]
	$\Delta \phi_{jj} ext{ vs } \Delta \phi_{\ell\ell}$	[-0.99, 0.99]	[-0.074, 0.074]
	$\Delta \phi_{jj} ext{ vs } p_{ ext{T},\ell\ell}$	[-1.04, 1.04]	[-0.066, 0.066]

Summary

- CP-odd effects can be proved in EFT context via construction of appropriate variables
- Three main approaches:
 - Optimal observables
 - Angular observables
 - Machine-learning based observables
- Differential cross-section as function of NN-constructed CP-odd, $O_{NN} = P_+ P_-$, can provide sensitivity to CP-odd effects
 - Outperforms angular observables
- Preservability of optimal observables in Rivet difficult due to PDF usage in matrix element calculation; preservability of NNbased observables to be investigated

Backup