Unbinned MVA techniques for EFT analyses

Alfredo Glioti

Institut de Physique Théorique

LHC EFT Working group meeting 24/10/2023

Chen, AG, Panico, Wulzer - **2007.10356** Chen, AG, Panico, Wulzer - **2308.05704**

Motivations

Huge variety of possible measurements at the LHC (high PT probes, Higgs couplings and distributions, ...)

Huge variety of putative New Physics effects in modelindependent (EFT) approach

Effective and systematic data analysis techniques needed to maximize sensitivity

Motivations

We can parametrize New Physics using the SMEFT Lagrangian

Predictions

$$\sigma(\theta), \quad p(x|\theta) = \frac{1}{\sigma(\theta)} \frac{d\sigma(\theta)}{dx}$$

Measurable observables

Simplified predictions

 $\sigma_i(\theta), \qquad i=1,\ldots N_{bins}$

Often loses information

Extracting the **full information** would require the likelihood $p(x|\theta)$ (as function of both x and θ)

How to access $p(x | \theta)$?

Monte Carlo generators work in the "forward mode": 1) sample unobservable "partonic" variables z_{part} from a known p(z_{part} | θ) 2) Transforms z_{part} to x, event by event

Unknown distribution of observables x $p(x|\theta) \approx \int dz_{part} p(x|z_{part}) p(z_{part}|\theta)$

z_{part} is normally very far from x (e.g. invisible particles, NLO effects...)

$$x \neq z_{part}$$

Even worse if we include showering, hadronization, detector...

p(x|θ) through Machine Learning

Brehmer & al. 1805.00013

Basic idea: approximate $p(x|\theta)$ with **Neural Networks**: $p(x|\theta) \leftrightarrow nn(x;w)$

The result will be **fully differential** on **all observables**, quick to evaluate and it can be obtained with a relatively small amount of Monte Carlo points.

No transfer functions modeling required.

Universal and systematically improvable

Simple Classifier

Consider fixed $\theta = \overline{\theta}$. We can learn $p(x|\overline{\theta})$ with respect to the SM ($\theta = 0$).

Training sample
$$\mathcal{T} = \{(x_i \sim p(x|0), y_i = 0), (x_i \sim p(x|ar{ heta}), y_i = 1)\}$$

$$\ell[nn(\cdot))] = \frac{1}{N_T} \sum (nn(x_i; w) - y_i)^2 \qquad \begin{array}{c} \text{Loss function.} \\ \text{Minimized by training (wrt w)} \\ \text{Sample limit} \qquad \ell \to \int dx \left[p(x|0)(nn(x) - 0)^2 + p(x|\bar{\theta})(nn(x) - 1)^2 \right] \end{array}$$

$$\frac{\delta\ell}{\delta nn} = 0 \implies nn(x) = \frac{p(x|\bar{\theta})}{p(x|0) + p(x|\bar{\theta})} \implies \tau(x;\bar{\theta}) \equiv \frac{p(x|\bar{\theta})}{p(x|0)} = \frac{nn(x)}{1 - nn(x)}$$

Reweighted data

Chen, AG, Panico, Wulzer - 2308.05704

The Simple Classifier loss can be generalized as a weighted sum

$$\ell[f(\cdot)] = \sum_{e \in S_0} w_e(\bar{c}) \left[f(x_e) \right]^2 + \sum_{e \in S_1} w_e(0) \left[f(x_e) - 1 \right]^2$$

Sum on different samples \rightarrow Simple Classifier

Sum on same sample \rightarrow **Reweighted** Classifier

The reason why reweighting helps can be understood by writing $f(x) = 1/2 + \delta f(x)$

No RW
$$\longrightarrow \ell[f(\cdot)] = \sum_{\mathbf{e}\in\mathbf{S}_0} w_{\mathbf{e}}(\bar{c})\delta f(x_{\mathbf{e}}) - \sum_{\mathbf{e}\in\mathbf{S}_1} w_{\mathbf{e}}(0)\delta f(x_{\mathbf{e}}) + \sum_{\mathbf{e}\in\mathbf{S}_0} w_{\mathbf{e}}(\bar{c})\delta f(x_{\mathbf{e}})^2 + \sum_{\mathbf{e}\in\mathbf{S}_1} w_{\mathbf{e}}(0)\delta f(x_{\mathbf{e}})^2$$

With RW $\longrightarrow \ell[f(\cdot)] = \sum_{\mathbf{e}\in\mathbf{S}} \left[w_{\mathbf{e}}(\bar{c}) - w_{\mathbf{e}}(0) \right] \delta f(x_{\mathbf{e}}) + \sum_{\mathbf{e}\in\mathbf{S}} \left[w_{\mathbf{e}}(\bar{c}) + w_{\mathbf{e}}(0) \right] \delta f(x_{\mathbf{e}})^2$

24/10/2023

Alfredo Glioti (IPhT)

Reweighted data

Chen, AG, Panico, Wulzer - 2308.05704

True likelihood ratio

Parametrized classifier

Chen, AG, Panico, Wulzer - 2007.10356

The **quadratic dependence** on the **Wilson Coefficients** can be learned in training by using a **parametrized** likelihood ratio

$$\ell[\gamma(\cdot)] = \sum_{\mathbf{e}\in\mathbf{S}}\sum_{\bar{c}\in\mathcal{C}}\left\{w_{\mathbf{e}}(\bar{c})\left[f(\gamma(x_{\mathbf{e}});\bar{c})\right]^{2} + w_{\mathbf{e}}(0)\left[f(\gamma(x_{\mathbf{e}});\bar{c}) - 1\right]^{2}\right\}$$

Application: WZ production

Franceschini & al. 1708.07823 Panico & al. 1712.01310

$$p \ p \to W^{\pm} \ Z \to (l^{\pm} \ \nu) \ (l^{+} \ l^{-})$$

BSM contribution growing with collision energy from **two operators**

$$\mathcal{O}_{\varphi q}^{(3)} = G_{\varphi q}^{(3)} \left(\overline{Q}_L \sigma^a \gamma^\mu Q_L \right) \left(i H^\dagger \overleftrightarrow{D}_\mu^a H \right)$$

$$\mathcal{O}_W = G_W \varepsilon_{abc} W^{a\,\nu}_\mu W^{b\,\rho}_\nu W^{c\,\mu}_\rho$$

Six independent and discriminating variables: ŝ + 5 angles

Why measure the decay angles?

BSM and SM contribute to **different helicities** of W and Z

$$SM \to 0/0, \pm 1/ \mp 1$$

 $\mathcal{O}_{\varphi q}^{(3)} \to 0/0$
 $\mathcal{O}_W \to \pm 1/ \pm 1$

Integrating over the decay angles makes us **lose** this **discriminating information**. For **Ow** integrating kills **interference with the SM**

Toy case: implementation

To check performances, we implemented a simple Monte Carlo for this process for which we know the **true likelihood analytically**

The observables given to the networks are

$$\left\{ \log[s/\text{GeV}^2], \Theta, \theta_Z, \theta_W, \log[p_T/\text{GeV}], Q, \sin\varphi_Z, \sin\varphi_W, \cos\varphi_Z, \cos\varphi_W \right\}$$

Kinematics in the **physical space**

Variables after reconstructing the neutrino

Redundancy helps a little bit, sin and cos of angles are useful to impose periodicity exactly

Toy case: validation

We can check how well the network **reconstructs** the **linear** and **quadratic** terms of the differential cross-section

Toy case: validation

For a more quantitative check of performance, we use the Neyman-Pearson p-value

$$t(\mathcal{D};c) = -2\left(N(c) - N(0) + \sum_{x \in \mathcal{D}} \tau_c(\mathcal{D})\right)$$

For the **true likelihood** this test gives the **best possible bound** (Neyman-Pearson lemma)

For the **network** this gives an objective **measure** of how well the **true likelihood is approximated**

Toy case: hyperparameters

initial configuration or training data coefficients marginally relevant Architecture must be selected to avoid underfit or overfit

better

Toy case: results

Red: optimal exclusion bound Blue: Neural Network result

- 5 Neural Networks {10, 24, 24, 1}
- Sigmoid activations
- Adam optimizer
- 3 Million reweighted training points
- 1000 epochs/minute on a GPU
- ~ 200k total epochs

NLO case: implementation

For a more realistic example we studied the same process generated with **MadGraph at NLO QCD**, with reweighting on New Physics

In this case the network is trained on 13 features

NLO case: results

- 5 Neural Networks {13,32, 32, 1}
- Sigmoid activation
- Adam optimizer
- 3 Million reweighted training points
- 1000 epochs/minute
- ~ 200k total epochs

Comparing to Binned Analysis

ME = Toy Matrix Element; **QC** = Quadratic Classifier; **BA** = Binned Analysis

Profile Likelihood

A standard profile likelihood test can be used and is nearly optimal

Conclusions

Multivariate analysis can greatly **increase the sensitivity** on BSM parameters, especially when new physics enters in multiple observables with a complex interference pattern.

Machine learning methods can overcome these difficulties by **learning the fully differential distribution** accurately from a Monte Carlo sample. Making the approximation more reliable is just a matter of increasing the training sample size and network architecture.

Two strategies to improve the learning of Likelihood from simulations

- Training on reweighted samples reduces number of training points needed and leads to a higher accuracy
- **Linear** and **quadratic** EFT terms can be learned separately in order to fit the likelihood also as a function of the Wilson Coefficients

In progress: including PDF uncertainties, quantifying the impact of detector (Delphes) effects, ...