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Motivations

Huge variety of possible measurements at the LHC
(high PT probes, Higgs couplings and distributions, ...)

Huge variety of putative New Physics effects in model-
independent (EFT) approach

U

Effective and systematic data analysis techniques needed to
maximize sensitivity

Alfredo Glioti (IPhT)




Motivations

We can parametrize New Physics using the SMEFT Lagrangian

Predictionz ,
Theory ——V oo plalt) = 0

Lsyerr = Loy + 0,086 + ... .

Measurable observables

Simplified predictions
a;(0), 1 =1,... Npins

Often loses information

Wilson coefficients on app
rOaCh

Extracting the full information would require the likelihood p(x|6)
(as function of both x and 6)
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How to access p(x|0)?

Monte Carlo generators work in the “forward mode”:

1) sample unobservable “partonic” variables z,, . from a known p(z,,.|6)
2) Transformsz,__. to x, event by event

part

part

Unknown distribution of observables x

p(z]6) ~ f DpartD (2 2pare ) zpart]9)

is normally very far from x (e.g. invisible particles, NLO effects...)

L 5& Zpa,'rt

Even worse if we include showering, hadronization, detector...

Zpart
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p(x|0) through Machine Learning

Basic idea: approximate p(x|f) with Neural Networks: p(z|0) <> nn(x; w)

Input layer Hidden layers i Output layer

“A“"L }";»Y .
‘ ' '

The result will be fully differential on all observables, quick to evaluate and it can be
obtained with a relatively small amount of Monte Carlo points.

No transfer functions modeling required.
Universal and systematically improvable
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Simple Classifier

Consider fixed 0 = 0. We can learn p(z|0) with respect to the SM (6 = 0).

Training sample T = {(x; ~p(x]0),y; = 0), (z; ~ p(z|0),y; = 1)}

1 5 Loss function.
lnn(-))] = N Z(nn(wz, w) = Yi) Minimized by training (wrt w)

Infinite training ) _, /da: [p(z]0)(nn(z) — 0)* + p(z|0) (nn(z) — 1)?]

sample limit

8 oy pl)
s~ 0 = ") = ) T p(@ld)

A o_pld)  nn(z)
= Wt = p(z|0) 1 —nn(x)
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Reweighted data

The Simple Classifier loss can be generalized as a weighted sum

eLf() Z we(€) |f xe)] + Z we (0) [f(xe) — 1]

eESy ecsS,
Sum on different samples = Simple Classifier Sum on same sample = Reweighted Classifier
The reason why reweighting helps can be understood by writing f(gc) = 1/2 e 5f(:r;)

NoRW —— ([f()] =) we(@)df(xe)— Y  we(0)5f(xe)+ Y  we(e)df (e)*+ > we(0)5f (we)?

ecSy ecSq ecSy ecSq
With RW — ———  £[f()] = [we(€) — we(0)] 6f (ze) + Y [we(E) + we(0)] 5f (2c)?
eES eES
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Reweighted data

0.1, SC no RW 0.1 q

0.05} 0.05"
Reconstructed :
likelihood << 0 @S 0
ratio : _

—0.05/ —0.05] - 0.01%
—0.1; _0.1;

~0.1 005 0 005 0.1 ~0.1 =005 0 005 0.1
Te Te

True likelihood ratio
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Parametrized classifier

The quadratic dependence on the Wilson Coefficients can be learned in
training by using a parametrized likelihood ratio

eeS ceC

()] =30 3 {wel@ [F(r(@e)s OF + we(0) [f(v(we)s ) — 1 }

This will converge to the likelihood
ratio during training —>

05/10/2023 - Benasque

Most generic positive quadratic
polynomial for d Wilson Coefficients

P(Az)ie) =) | D As(@)es

d+1 [d—|—1
I=1 =

r

A upper triangular matrix

A1 =1
While the other components
are Neural Networks
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Application: WZ production

pp—=W*EZ 5 (Fv) (1T 17)

BSM contribution growing with collision
energy from two operators

>

— ) p=gh
08 = GE (QLo"v"Qr) (iH DL H)

g Ow = Gwea Wi W) PrWeH

Six independent and discriminating
________ variables: 5 + 5 angles
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Why measure the decay angles?

BSM and SM contribute to different helicities of W and Z

0.207
SM — 0/0, £1/ F 1 5
3 L
O(foq) — 0/0 o 015,
£ 0.10-

:

Integrating over the decay angles makes us lose 0.05¢
this discriminating information.

For Ow integrating kills interference with the SM

0.00 -

¢reco
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Toy case: implementation

To check performances, we implemented a simple Monte Carlo for this process for which we
know the true likelihood analytically

{Q, x, 5, 0, 0w, pw, 0z, pz,y} Kinematics in the

y N\ latent space
¥ N
Helicity of Z decay Variables if the neutrino
products was measured

The observables given to the networks are

2 ) . Kinematics in the
log[S/GeV ]7 @7 9Z7 QWJ logLPT/GeV]) QJ SIN @z, SN Yw, COSYz, COS LW physical space

Variables after reconstructing Redundancy helps a little bit, sin and cos of angles
the neutrino are useful to impose periodicity exactly
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Toy case: validation

We can check how well the network reconstructs the linear and quadratic terms of the
differential cross-section

10 =7 ] 2000F =7 |

I ] 1000 3 mr E

5 1 = 500F . MC .
= £ :

n oo 200F :

= i

g 2 | = 100L |

) R : ]

k= = 50f ]
. = .

I8 . c i

0.5 |

300 — 350 350 — 400 400 — 500 500 — 750 750 — 1000 1000 — 4000 300 — 350 350 — 400 400 — 500 500 — 750 750 — 1000 1000 — 4000
Pr (GBV) pPT (GGV)
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Toy case: validation

For a more quantitative check of performance, we use the Neyman-Pearson p-value

t(D;c) = —2 (N(c) —N©O)+ ) Tc(p))

rED

For the true likelihood this test gives the best
possible bound (Neyman-Pearson lemma)

t For the network this gives an objective measure of
how well the true likelihood is approximated
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Toy case: hyperparameters

B 0 115_ Seed Data| Data Size Wilson Architecture E
' O 100k :
2 : . :
H 0.1F =

™ : 8 ]
= : . -
= 0.09¢ 250k E

' g . 12 E
008k 00k ’ £
- 0.01 -
?éj True
No dependenceon  More data=  Choice of training Architecture
initial configuration better coefficients must be selected
or training data marginally relevant to avoid underfit
or overfit
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Toy case: results

: Red: optimal exclusion bound
Blue: Neural Network result

* 5 Neural Networks {10, 24, 24, 1}

e Sigmoid activations

: : * Adam optimizer

—044 * 3 Million reweighted training points
—0-6§ * 1000 epochs/minute on a GPU

_osk e ~ 200k total epochs
05 04 03 —02 —01 0. 01 02 03 04 05

G, [x10? TeV 7]

Gy [x10% TeV 7]
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NLO case: implementation

For a more realistic example we studied the same process generated with
MadGraph at NLO QCD, with reweighting on New Physics

In this case the network is trained on 13 features

{

log[s/GeV?], ©, 0z, Oy, log[pr/GeV], log[14+pr.zw/GeV], Q, £z, Ly sin @z, sin oy, cos Yz, cos P

}

/ \ ~
4 N
Total WZ transverse momentum, Flavor or Z and W decays
Non trivial due to additional jet Distribution changes due to QED showering
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NLO case: results

1 /—\ NLO 1
R 055_ e 5 Neural Networks {13,32, 32, 1}
% : * Sigmoid activation
NB ; : * Adam optimizer
— k: * 3 Million reweighted training points
X : * 1000 epochs/minute
(_? —0oF ¢ ~ 200k total epochs

0.5 =04 =03 =02 =01 0. 01 02 03 04 05

G,[x10% TeV~?]
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Comparing to Binned Analysis

ME = Toy Matrix Element; QC = Quadratic Classifier; BA = Binned Analysis

Ggg — 20 Exclusion Reach

[ B ME [ | QC M BA
— 05f
>
H L
N 0.0 I I I I
- i
IS
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Toy Data MG LO MG NLO
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Profile Likelihood

A standard profile likelihood test can be used and is nearly optimal

e &
% 0.4;- %
= 02 =
a1 0.t ™
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Conclusions

Multivariate analysis can greatly increase the sensitivity on BSM parameters, especially when new
physics enters in multiple observables with a complex interference pattern.

Machine learning methods can overcome these difficulties by learning the fully differential distribution
accurately from a Monte Carlo sample. Making the approximation more reliable is just a matter of
increasing the training sample size and network architecture.

Two strategies to improve the learning of Likelihood from simulations

o Training on reweighted samples reduces number of training points
needed and leads to a higher accuracy

o Linear and quadratic EFT terms can be learned separately in order to
fit the likelihood also as a function of the Wilson Coefficients

In progress: including PDF uncertainties, quantifying the impact of detector (Delphes) effects, ...
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