AXEL-2023 Introduction to Particle Accelerators

Transverse optics 1: ✓Relativity, Energy & Units ✓Accelerator co-ordinates ✓Magnets and their configurations ✓Hill's equation

Rende Steerenberg (BE/OP)

27 November 2023

CERN Accelerators

Classical Filling of the LHC with Protons

R. Steerenberg

Energy & Momentum

Einstein's relativity formula: $E = mc^2$

For a mass at rest this will be: $E_0 = m_0 c^2$

Define: $\gamma = \frac{E}{E_0}$ As being the ratio between the total energy and the rest energy

Then the mass of a moving particle is: $m = \gamma m_0$

Define: $\beta = \frac{v}{c}$, then we can write: $\beta = \frac{mvc}{mc^2}$

p = mv ,which is always
true and gives:

$$\beta = \frac{pc}{E} \quad or \quad p = \frac{E\beta}{c}$$

Rest mass

Rest energy

The Units we use for Energy

The energy acquired by an electron in a potential of 1 Volts is defined as being 1 eV

The unit eV is too small to be used today, we use:

1 KeV = 10^3 , MeV = 10^6 , GeV = 10^9 , TeV = 10^{12}

Energy: eV versus Joules

The unit most commonly used for Energy is Joules [J]

- # In accelerator and particle physics we talk about
 eV...!?
- The energy acquired by an electron in a potential of
 1 Volt is defined as being 1 eV
- # 1 eV is 1 elementary charge 'pushed' by 1 Volt.

 $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules}$

Units: Energy & Momentum (2)

However:

Momentum

Therefore the units for momentum are GeV/c...etc.

Attention:

when $\beta = 1$ energy and momentum are equal

when $\beta < 1$ the <u>energy</u> and <u>momentum</u> are <u>not equal</u>

Units: Example PS injection

- ✓ Kinetic energy at injection E_{kinetic} = 1.4 GeV
 ✓ Proton rest energy E₀=938.27 MeV
- \checkmark The total energy is then: E = E_{kinetic} + E₀ = 2.34 GeV
- \checkmark We know that $\gamma = \frac{E}{E_0}$, which gives $\gamma = 2.4921$

$$\checkmark$$
 We can derive $\beta = \sqrt{1 - \frac{1}{\gamma^2}}$, which gives $\beta = 0.91597$

$$\checkmark$$
 Using $p = \frac{E\beta}{c}$ we get p = 2.14 GeV/c

✓ In this case: Energy ≠ Momentum

R. Steerenberg

Accelerator co-ordinates

We can speak about a:
 <u>Rotating Cartesian Co-ordinate System</u>

Magnetic rigidity

✓ The force <u>evB</u> on a charged particle moving with velocity <u>v</u> in a dipole field of strength <u>B</u> is equal to its mass multiplied by its acceleration towards the centre of its circular path.

 $B\rho = 33.356 \cdot p [KG \cdot m] = 3.3356 \cdot p [T \cdot m]$ (if p is in [GeV/c])

R. Steerenberg

Some LHC figures

LHC circumference = 26658.883 m
Therefore the radius r = 4242.9 m

There are 1232 main dipoles to make 360°
 This means that each dipole deviates the beam by only 0.29°

✓ The dipole length = 14.3 m

 The total dipole length is thus 17617.6 m, which occupies 66.09 % of the total circumference

✓ The bending radius ρ is therefore ✓ $\rho = 0.6609 \times 4242.9 \text{ m} \rightarrow \rho = 2804 \text{ m}$

Dipole magnet

- \checkmark A dipole with a uniform dipolar field deviates a particle by an angle $\theta.$
- The deviation angle θ depends on the length L and the magnetic field B.
- \checkmark The angle θ can be calculated:

 \checkmark If θ is small:

✓ So we can write:

$$\theta = \frac{LB}{(B\rho)}$$

R. Steerenberg

A Real Dipole Magent

Two particles in a dipole field

What happens with two particles that travel in a dipole field with different initial angles, but with equal initial position and equal momentum?

Particle A

- - Particle B

✓ Assume that Bp is the same for both particles.
✓ Lets unfold these circles.....

The 2 trajectories unfolded

✓ The horizontal displacement of particle B with respect to particle A.

- ✓ Particle B oscillates around particle A.
- ✓ This type of oscillation forms the basis of all transverse motion in an accelerator.
- ✓ It is called <u>'Betatron Oscillation'</u>

'Stable' or 'unstable' motion ?

- ✓ Since the horizontal trajectories close we can say that the horizontal motion in our simplified accelerator with only a horizontal dipole field is <u>'stable'</u>
- What can we say about the vertical motion in the same simplified accelerator ? Is it <u>'stable'</u> or <u>'unstable'</u> and why ?
- ✓ What can we do to make this motion stable ?
- ✓ We need some element that 'focuses' the particles back to the reference trajectory.
- \checkmark This extra focusing can be done using:

Quadrupole magnets

Quadrupole Magnet

A Real Quadrupole Magnet

Quadrupole fields

²⁰

Types of quadrupoles

Rotating this magnet by 90° will give a:
 <u>Defocusing Quadrupole (QD)</u>

R. Steerenberg

Focusing and Stable motion

- ✓ Using a combination of focusing (QF) and defocusing (QD) quadrupoles solves our problem of 'unstable' vertical motion.
- ✓ It will keep the beams focused in both planes when the position in the accelerator, type and strength of the quadrupoles are well chosen.
- ✓ By now our accelerator is composed of:
 - <u>Dipoles</u>, constrain the beam to some closed path (orbit).
 - Focusing and Defocusing Quadrupoles, provide horizontal and vertical focusing in order to constrain the beam in transverse directions.
- ✓ A combination of focusing and defocusing sections that is very often used is the so called: FODO lattice.
- This is a configuration of magnets where focusing and defocusing magnets alternate and are separated by nonfocusing drift spaces.

A Real Machine

The mechanical equivalent

✓ The gutter below illustrates how the particles in our accelerator behave due to the quadrupolar fields.

 Whenever a particle beam diverges too far away from the central orbit the quadrupoles focus them back towards the central orbit.

> How can we represent the focusing gradient of a quadrupole in this mechanical equivalent ?

The particle characterized

- ✓ A particle during its transverse motion in our accelerator is characterized by:
 - <u>Position</u> or displacement from the central orbit.
 - <u>Angle with respect to the central orbit.</u>

✓ This is a motion with a <u>constant restoring force</u>, like in the first lecture on differential equations, with the <u>rendulum</u>

Hill's equation

- These betatron oscillations exist in both horizontal and vertical planes.
- ✓ The number of betatron oscillations per turn is called the betatron tune and is defined as Qx and Qy.
- Hill's equation describes this motion mathematically

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

- ✓ If the restoring force, K is constant in 's' then this is just a <u>Simple Harmonic Motion</u>.
- \checkmark 's' is the longitudinal displacement around the accelerator.

Hill's equation (2)

- ✓ In a real accelerator K varies strongly with 's'.
- Therefore we need to solve Hill's equation for K varying as a function of 's'

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

- ✓ What did we conclude on the mechanical equivalent concerning the shape of the gutter.....?
- ✓ How is this related to Hill's equation....?

Questions..., Remarks ...?

