AXEL-2023
 Introduction to Particle Accelerators

Transverse optics 2:

\checkmark Hill's equation \checkmark Phase Space \checkmark Emittance \& Acceptance \checkmark Matrix formalism

Rende Steerenberg (BE/OP)

27 November 2023

Hill's equation

\checkmark The betatron oscillations exist in both horizontal and vertical planes.
\checkmark The number of betatron oscillations per turn is called the betatron tune and is defined as Qx and Qy.
\checkmark Hill's equation describes this motion mathematically

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark If the restoring force, K is constant in ' s ' then this is just a Simple Harmonic Motion.
\checkmark ' s ' is the longitudinal displacement around the accelerator.

Hill's equation (2)

\checkmark In a real accelerator K varies strongly with ' s '.
\checkmark Therefore, we need to solve Hill's equation for K varying as a function of ' s '

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark Remember what we concluded on the mechanical equivalent concerning the shape of the gutter.
\checkmark The phase advance and the amplitude modulation of the oscillation are determined by the shape of the gutter.
\checkmark The overall oscillation amplitude will depend on the initial conditions, i.e. how the motion of the ball started.

Solution of Hill's equation (1)

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark Remember, this is a $2^{\text {nd }}$ order differential equation.
\checkmark In order to solve it lets try to guess a solution:

$$
x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)
$$

$\checkmark \varepsilon$ and Φ_{0} are constants, which depend on the initial conditions.
$\checkmark \beta(s)=$ the amplitude modulation due to the changing focusing strength.
$\checkmark \Phi(s)=$ the phase advance, which also depends on focusing strength.

Solution of Hill's equation (2)

\checkmark Define some parameters
$\checkmark \ldots$ and let $\phi=\left(\phi(s)+\phi_{0}\right)$

$x=\sqrt{\varepsilon} . \omega(\mathrm{s}) \cos \phi$

> Remember Φ is still \quad a function of s

\checkmark In order to solve Hill's equation we differentiate our guess, which results in:

$$
x^{\prime}=\sqrt{\varepsilon} \frac{d \omega}{d s} \cos \phi-\sqrt{\varepsilon} \omega \phi^{\prime} \sin \phi
$$

\checkmark......and differentiating a second time gives:

$$
x^{\prime \prime}=\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \cos \phi
$$

\checkmark Now we need to substitute these results in the original equation.

Solution of Hill's equation (3)

\checkmark So we need to substitute $x=\sqrt{\varepsilon . \beta(s)} \cos \left(\phi(s)+\phi_{0}\right)$ and its second derivative
$x^{\prime \prime}=\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \cos \phi$
into our initial differential equation

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

\checkmark This gives:

$$
\left|\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi\right|
$$

$$
+K(s) \sqrt{\varepsilon} \omega \cos \phi=0
$$

Sine and Cosine are orthogonal and will never be 0 at the same time
R. Steerenberg

Solution of Hill's equation (4)

$$
\begin{gathered}
\sqrt{\varepsilon} \omega^{\prime \prime} \cos \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega^{\prime} \phi^{\prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime \prime} \sin \phi-\sqrt{\varepsilon} \omega \phi^{\prime 2} \cos \phi \\
+K(s) \sqrt{\varepsilon} \omega \cos \phi=0
\end{gathered}
$$

\checkmark Using the 'Sin'

$$
\longrightarrow 2 \omega^{\prime} \phi^{\prime}+\omega \phi^{\prime \prime}=0 \longrightarrow 2 \omega \omega^{\prime} \phi^{\prime}+\omega^{2} \phi^{\prime \prime}=0
$$ terms

\checkmark We defined $\beta=\omega^{2}$, which after differentiating gives $\beta^{\prime}=2 \omega \omega^{\prime}$
\checkmark Combining $2 \omega \omega^{\prime} \phi^{\prime}+\omega^{2} \phi^{\prime \prime}=0$ and $\beta^{\prime}=2 \omega \omega^{\prime}$ gives: $\beta^{\prime} \phi^{\prime}+\beta \phi^{\prime \prime}=\left(\beta \phi^{\prime}\right)^{\prime}=0$
As condition for our guessed solution to be valid we get:

$$
\beta \phi^{\prime}=\text { const. }=1 \text { hence } \phi^{\prime}=\frac{d \phi}{d s}=\frac{1}{\beta}
$$

\checkmark So our guess seems to be correct

Solution of Hill's equation (5)

\checkmark Since our solution was correct, we have the following for x :

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi
$$

\checkmark For x ' we have now:

\checkmark Thus, the expression for x ' finally becomes:

$$
x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

Phase Space Ellipse

\checkmark So now we have an expression for x and x '

$$
x=\sqrt{\varepsilon \cdot \beta} \cos \phi \quad \text { and } \quad x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos \phi-\sqrt{\varepsilon / \beta} \sin \phi
$$

\checkmark If we plot x^{\prime} versus x as Φ goes from 0 to 2π we get an ellipse, which is called the phase space ellipse.

Phase Space Ellipse (2)

\checkmark As we move around the machine the shape of the ellipse will change as β changes under the influence of the quadrupoles
\checkmark However, the area of the ellipse ($\pi \varepsilon$ does not change

$\checkmark \underline{\varepsilon}$ is called the transverse emittance and is determined by the initial beam conditions.
\checkmark The units are meter - radians, but in practice we use more often $\mathrm{mm} \cdot \mathrm{mrad}$.

Phase Space Ellipse (3)

\checkmark For each point along the machine the ellipse has a particular orientation, but the area remains the same

Phase Space Ellipse (4)

\checkmark The projection of the ellipse on the x-axis gives the Physical transverse beam size.
\checkmark Therefore the variation of $\beta(s)$ around the machine will tell us how the transverse beam size will vary.

Emittance \& Acceptance

\checkmark To be rigorous we should define the emittance slightly differently.
\checkmark Observe all the particles at a single position on one turn and measure both their position and angle.
\checkmark This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x^{\prime}.

\checkmark The emittance is the area of the ellipse, which contains all, or a defined percentage, of the particles.
\checkmark The acceptance is the maximum area of the ellipse, which the emittance can attain without losing particles.

Emittance measurement

Matrix Formalism

\checkmark Lets represent the particles transverse position and angle by a column matrix.

$$
\binom{x}{x^{\prime}}
$$

\checkmark As the particle moves around the machine the values for x and x ' will vary under influence of the dipoles, quadrupoles and drift spaces.
\checkmark These modifications due to the different types of magnets can be expressed by a Transport Matrix M
\checkmark If we know x_{1} and x_{1}^{\prime} at some point s_{1} then we can calculate its position and angle after the next magnet at position s_{2} using:

$$
\binom{x\left(s_{2}\right)}{x\left(s_{2}\right)^{\prime}}=M\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x\left(s_{1}\right)}{x\left(s_{1}\right)^{\prime}}
$$

How to apply the formalism

\checkmark If we want to know how a particle behaves in our machine as it moves around using the matrix formalism, we need to:
\checkmark Split our machine into separate elements as dipoles, focusing and defocusing quadrupoles, and drift spaces.
\checkmark Find the matrices for all of these components
\checkmark Multiply them all together
\checkmark Calculate what happens to an individual particle as it makes one or more turns around the machine

Matrix for a drift space

\checkmark A drift space contains no magnetic field.
\checkmark A drift space has length L.

Matrix for a quadrupole

\checkmark A quadrupole of length L.

Remember $\mathrm{B}_{\mathrm{y}} \propto \mathrm{x}$ and the deflection due to the magnetic field is: $\frac{L B_{y}}{(B \rho)}=-\frac{L K}{(B \rho)} \cdot x$

Matrix for a quadrupole (2)

\checkmark We found:

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{L K}{(B \rho)} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

\checkmark Define the focal length of the quadrupole as $f=\frac{(B \rho)}{K L}$

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

How now further?

\checkmark For our purpose we will treat dipoles as simple drift spaces as they bend all the particles by the same amount.
\checkmark We have Transport Matrices corresponding to drift spaces and quadrupoles.
\checkmark These matrices describe the real discrete focusing of our quadrupoles.
\checkmark Now we must combine these matrices with our solution to Hill's equation, since they describe the same motion......

Questions....,Remarks...?

