AXEL-2023 Introduction to Particle Accelerators

Transverse optics 2: √Hill's equation √Phase Space √Emittance & Acceptance √Matrix formalism

Rende Steerenberg (BE/OP)

27 November 2023

Hill's equation

- The <u>betatron oscillations</u> exist in both horizontal and vertical planes.
- ✓ The number of betatron oscillations per turn is called the <u>betatron tune</u> and is defined as <u>Qx</u> and <u>Qy</u>.
- Hill's equation describes this motion mathematically

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

- ✓ If the restoring force, K is constant in 's' then this is just a <u>Simple Harmonic Motion</u>.
- 's' is the longitudinal displacement around the accelerator.

Hill's equation (2)

✓ In a real accelerator K varies strongly with 's'.
 ✓ Therefore, we need to solve Hill's equation for K varying as a function of 's'

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

- Remember what we concluded on the mechanical equivalent concerning the shape of the gutter.....
 - ✓ The phase advance and the amplitude modulation of the oscillation are determined by the shape of the gutter.
 - ✓ The overall <u>oscillation amplitude</u> will depend on the <u>initial</u> <u>conditions</u>, i.e. how the motion of the ball started.

Solution of Hill's equation (1)

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

✓ Remember, this is a 2nd order differential equation.
 ✓ In order to solve it lets try to guess a solution:

 $x = \sqrt{\varepsilon.\beta(s)}\cos(\phi(s) + \phi_0)$

 $\checkmark \epsilon$ and Φ_0 are constants, which depend on the <u>initial</u> <u>conditions</u>.

- $\checkmark \beta(s)$ = the <u>amplitude modulation</u> due to the changing focusing strength.
- $\checkmark \Phi(s)$ = the <u>phase advance</u>, which also depends on focusing strength.

R. Steerenberg

Solution of Hill's equation (2)

 In order to solve Hill's equation we differentiate our guess, which results in:

$$x' = \sqrt{\varepsilon} \frac{d\omega}{ds} \cos\phi - \sqrt{\varepsilon} \omega \phi' \sin\phi$$

.....and differentiating a second time gives:

 $x'' = \sqrt{\varepsilon}\omega''\cos\phi - \sqrt{\varepsilon}\omega'\phi'\sin\phi - \sqrt{\varepsilon}\omega'\phi'\sin\phi - \sqrt{\varepsilon}\omega\phi''\sin\phi - \sqrt{\varepsilon}\omega\phi''\sin\phi - \sqrt{\varepsilon}\omega\phi''\cos\phi$

✓ Now we need to substitute these results in the original equation.

R. Steerenberg

Solution of Hill's equation (3)

✓ So we need to substitute $x = \sqrt{\varepsilon \cdot \beta(s)} \cos(\phi(s) + \phi_0)$

and its second derivative

 $x'' = \sqrt{\varepsilon}\omega'' \cos\phi - \sqrt{\varepsilon}\omega'\phi' \sin\phi - \sqrt{\varepsilon}\omega'\phi' \sin\phi - \sqrt{\varepsilon}\omega\phi'' \sin\phi - \sqrt{\varepsilon}\omega\phi'' \sin\phi - \sqrt{\varepsilon}\omega\phi'' \cos\phi$

into our initial differential equation

$$\frac{d^2x}{ds^2} + K(s)x = 0$$

✓ This gives:

 $\sqrt{\varepsilon}\omega''\cos\phi - \sqrt{\varepsilon}\omega'\phi'\sin\phi - \sqrt{\varepsilon}\omega'\phi'\sin\phi - \sqrt{\varepsilon}\omega\phi''\sin\phi - \sqrt{\varepsilon}\omega\phi''\sin\phi - \sqrt{\varepsilon}\omega\phi''^{2}\cos\phi + K(s)\sqrt{\varepsilon}\omega\cos\phi = 0$

Sine and Cosine are orthogonal and will never be 0 at the same time

The sum of the coefficients must vanish separately to make our guess valid for all phases

R. Steerenberg

Solution of Hill's equation (4)

$$\sqrt{\varepsilon}\omega''\cos\phi - \sqrt{\varepsilon}\omega'\phi'\sin\phi - \sqrt{\varepsilon}\omega'\phi'\sin\phi - \sqrt{\varepsilon}\omega\phi''\sin\phi - \sqrt{\varepsilon}\omega\phi''\cos\phi + K(s)\sqrt{\varepsilon}\omega\cos\phi = 0$$

✓ Using the 'Sin' $\longrightarrow 2\omega'\phi'+\omega\phi''=0 \longrightarrow 2\omega\omega'\phi'+\omega^2\phi''=0$ terms

✓ We defined $\beta = \omega^2$, which after differentiating gives $\beta' = 2\omega\omega'$

✓ Combining $2\omega\omega'\phi'+\omega^2\phi''=0$ and $\beta'=2\omega\omega'$ gives: $\beta'\phi'+\beta\phi''=(\beta\phi')'=0$

As condition for our guessed solution to be valid we get:

$$\beta \phi' = const. = 1$$
 hence $\phi' = \frac{d\phi}{ds} = \frac{1}{\beta}$

 \checkmark So our guess seems to be correct

R. Steerenberg

AXEL - 2023

 $d\beta d\omega$

 $d\omega ds$

Solution of Hill's equation (5)

✓ Since our solution was correct, we have the following for x:

 $x = \sqrt{\varepsilon . \beta} \cos \phi$

✓ For x' we have now:

$$x' = \sqrt{\varepsilon} \frac{d\omega}{ds} \cos\phi - \sqrt{\varepsilon} \omega \phi' \sin\phi$$

Thus, the expression for x' finally becomes:

$$x' = -\alpha \sqrt{\varepsilon / \beta} \cos \phi - \sqrt{\varepsilon / \beta} \sin \phi$$

AXEL - 2023

 $\omega = 1$

Phase Space Ellipse

 \checkmark So now we have an expression for x and x'

$$x = \sqrt{\varepsilon.\beta} \cos\phi$$
 and $x' = -\alpha \sqrt{\varepsilon/\beta} \cos\phi - \sqrt{\varepsilon/\beta} \sin\phi$

✓ If we plot <u>x' versus x as Φ goes from 0 to 2π </u>we get an ellipse, which is called the <u>phase space ellipse</u>.

Phase Space Ellipse (2)

- \checkmark As we move around the machine the shape of the ellipse will change as β changes under the influence of the quadrupoles
- ✓ However, the area of the ellipse ($\pi \varepsilon$ does not change x'

 $\sqrt{\varepsilon/\beta}$

Area = $\pi \cdot \mathbf{r}_1 \cdot \mathbf{r}_2$

Х

 $\sqrt{\varepsilon/\beta}$

 \checkmark <u> ε </u> is called the <u>transverse emittance</u> and is determined by the initial beam conditions.

 $\sqrt{\varepsilon.\beta}$

✓ The units are meter \cdot radians, but in practice we use more often <u>mm \cdot mrad</u>.

X

 $\sqrt{\varepsilon}.\beta$

Phase Space Ellipse (3)

✓ For each point along the machine the ellipse has a particular orientation, but the area remains the same

Phase Space Ellipse (4)

- ✓ The projection of the ellipse on the x-axis gives the Physical transverse beam size.
- ✓ Therefore the variation of $\beta(s)$ around the machine will tell us how the transverse beam size will vary.

Х

 $\sqrt{\varepsilon.\beta}$

 $\sqrt{\varepsilon/\beta}$

Emittance & Acceptance

- ✓ To be rigorous we should define the emittance slightly differently.
 - Observe all the particles at a single position on one turn and measure both their position and angle.
 - This will give a large number of points in our phase space plot, each point representing a particle with its co-ordinates x, x'.

- ✓ The <u>emittance</u> is the <u>area</u> of the ellipse, which contains all, or a defined percentage, of the particles.
- ✓ The <u>acceptance</u> is the maximum <u>area</u> of the ellipse, which the emittance can attain without losing particles.

Emittance measurement

R. Steerenberg

Matrix Formalism

Lets represent the particles transverse position and angle by a column matrix.

- As the particle moves around the machine the values for x and x' will vary under influence of the dipoles, quadrupoles and drift spaces.
- These modifications due to the different types of magnets can be expressed by a <u>Transport Matrix M</u>
- ✓ If we know x_1 and x_1' at some point s_1 then we can calculate its position and angle after the next magnet at position s_2 using:

$$\binom{x(s_2)}{x(s_2)'} = M\binom{x(s_1)}{x(s_1)'} = \binom{a}{c} \binom{x(s_1)}{x(s_1)'}$$

R. Steerenberg

How to apply the formalism

- ✓ If we want to know how a particle behaves in our machine as it moves around using the matrix formalism, we need to:
 - Split our machine into separate elements as dipoles, focusing and defocusing quadrupoles, and drift spaces.
 - Find the matrices for all of these components
 - Multiply them all together
 - Calculate what happens to an individual particle as it makes one or more turns around the machine

Matrix for a drift space

✓ A <u>drift space</u> contains <u>no magnetic field</u>.
✓ A <u>drift space</u> has <u>length L</u>.

 $x_2 = x_1 + L.x_1'$

Matrix for a quadrupole

 \mathbf{X}_1

✓ A quadrupole of length L.

Remember $B_y \propto x$ and the deflection due to the magnetic field is: $LB_y = -\frac{LK}{(B\rho)} \cdot x$

Provided L
is small
$$x_2 = x_1 + 0$$

 $x_2' = -\frac{LK}{(B\rho)}x_1 + x_1'$

$$\begin{pmatrix} x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{LK}{(B\rho)} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}$$

deflection

 X_2

 X_1

 X_2

Matrix for a quadrupole (2)

✓ We found :

$$\begin{pmatrix} x_2 \\ x_2' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{LK}{(B\rho)} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1' \end{pmatrix}$$

✓ Define the focal length of the quadrupole as $f = \frac{(B\rho)}{KL}$

$$\begin{pmatrix} x_2 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}$$

How now further?

- For our purpose we will treat dipoles as simple drift spaces as they bend all the particles by the same amount.
- ✓ We have <u>Transport Matrices</u> corresponding to <u>drift spaces</u> and <u>quadrupoles</u>.
- These matrices describe the real discrete focusing of our quadrupoles.
- Now we must <u>combine these matrices with</u> our solution to <u>Hill's equation</u>, since they describe the same motion.....

Questions...,Remarks...?

