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( A quick recap.......

v We solved Hill’ s equation, which led us to the
definition of transverse emittance and allowed us
to describe particle motion in transverse phase

space in terms of P, g, etfc...

v We constructed the Transport Matrices
corresponding to drift spaces and quadrupoles. /"”

v Now we must combine these matrices with the
solution of Hill’s equation to evaluatf{ a, etc..
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Matrices & Hill" s equation

v We can multiply the matrices of our drift spaces and
quadrupoles together to form a transport matrix that
describes a larger section of our accelerator.

v' These matrices will move our particle from one point
(x(sq1).x" (s1)) on our phase space plot to another (x(s,),x" (s,)),
as shown in the matrix equation below.

X(S2)
o

|

:(

a b)) ( x(s1)
C dj . (X'(Sl)j

v The elements of this matrix are fixed by the elements
through which the particles pass from point s; to point s,.

v However, we can also express (x, x" ) as solutions of Hill' s

equation.

X=./€.C0S@

R. Steerenberg

and

AXEL - 2023 ’
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( Matrices & Hill s equation (2)

X=./e.pcos(u+g) \ X=./&.COS¢

\X(Sz) (a b)) (x(s)
(X'(Sz)j_(c dj.(x'(sl)j

X'=—a+ el fcos(u+@)—+ el Bsin 1+ Q) X'=—a /el fcosg—+/el fsin @

v' Assume that our transport matrix describes a complete turn
around the machine.

v Therefore : [(s,) = [(s;)
v' Let pbe the change in betatron phase over one complete turn.
v Then we get for x(s,):

X(s2) =+/e.B cos(u+ @) =ai/e. B cosg—barJel B cosg—byel Bsin ¢
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( Matrices & Hill" s equation (3)

v So, for the position x at s2 we have...

JeBcos(u+¢) =ad/e.Bcosg—barel fcosp—bfel Bsin ¢
—i

|cos¢@cos i —sin gsin u

v' Equating the ‘sin’ terms gives: |-./&.4sin usin ¢ =—b./e/ Bsin ¢
v" Which leads to: b= Asin u

v' Equating the ‘cos’ terms
gives. @COS#CO5¢=a@c03¢—a@Sin LCOS @

v Which leads to: |a=cosu+asin u

v We can repeat this for c and d.
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Matrices & Twiss parameters

Ja="P/ - _wo
v Remember previously we defined: d
= (02
v’ These are called TWISS parameters 1+ o2
7/ =
B

v" Remember also that pis the total betatron phase advance
over one complete turn is.

Number of betatron
Q y7i oscillations per turn

“or

v Our transport matrix becomes now:

a b) (cosu+asinu £sin
c d —ySin u COS i —aSIN
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Lattice parameters

COS i+ axSin u £sin u
—ysin u COSu—asSin u

v" This matrix describes one complete turn around our machine
and will vary depending on the starting point (s).

v' If we start at any point and multiply all of the matrices
representing each element all around the machine we can
calculate a, p, y and p for that specific point, which then will

give us Als) and Q

v' If we repeat this many times for many different.initial
positions (s) we can calculate our Lattice Parameters for all
points around the machine.
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Lattice calculations and codes

v" Obviously p (or Q) is not dependent on the initial position ‘s’
but we can calculate the change in betatron phase, du, from one
element to the next.

v' Computer codes like “MAD” or “Transport” vary lengths,
positions and strengths of the individual elements to obtain the
desired beam dimensions or envelope ‘p(s)’ and the desired

Q.

v’ Often a machine is made of many individual and identical
sections (FODO cells). In that case we only calculate.a'single
cell and not the whole machine, as the the functions p (s) and dy
will repeat themselves for each identical section.

v The insertion sections have to be calculated tely.
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( The B(s) and Q relation.

vR=12 where 4 = A@ over a complete turn
27 P
de(s 1
v But we also found: ﬁg )= ()
Over one complete turn
1 s ds

v This leads to: Q

_anoﬂ(s)

v' Increasing the focusing strength decreases the size of the
beam envelope (B) and increases Q and vice versa.
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Tune corrections

v What happens if we change the focusing strength slightly?
v The Twiss matrix for our ‘FODO’ cell is given by:

COS 12+ aSin u £sin i
—ysin u COS 1 —aSin u

v Add a small QF quadrupole, with strength dK and length ds.
v' This will modify the ‘FODO’ lattice, and add a horizontal

focusing term: [ 1 0] dk—d_K f—(Bp)

—dkds 1 (Bp) ~ dKds

v The new Twiss matrix representing the modified lattice is:

1 0\(cosu+asin u Asin u
—dkds 1 —ysin u COS i —aSin
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Tune corrections (2)

v' This gives

(—dkds

COS 1+ aSin u

psin u

(cospsing)—ysin . —dkds/sin u+cos 1 —asin i

)

v' This extra quadrupole will modify the phase advance u for the

FODO cell.

New phase advance

/

fy=p+dy

N

Change in phase advance

v' If du is small then we can ignore changes in

v' So the new Twiss matrix is just:

|

COS 4+ aSIN 11,
—Sin 1

£sin uu j

COS 4 —aSIN 11,
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Tune corrections (3)

v These two matrices represent the same FODO cell therefore:

COS 1+ SIN 1

£sin u

[— dkds(cosge+sing)—ysin g —dkdssinu+cos i —asin u

|

v Which equals:

COS &+ SIN 44
—ysin 11

Asin u,
COS 16— axSIN i,

1

v' Combining and compare the first and the fourth terms of

these two matrices gives:

2cospu . =2cosp —dk dspsinp
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( Tune corrections (4)

2cosu . =2cospu —dk dspsin
A 1 \B 1

Remember py = pu+ du

o

2cospu—2sin udu

e _

In the horizontal

plane this is a QF\

d y:%dkdsﬂ

doh=+1 dkds sn
A

and dy is small

2sin 1d i=dkdsBsin 1

but: dQ =du/2m

If we follow the same reasoning for both transverse
planes for both QF and QD quadrupoles

QD
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( Tune corrections (5)

Let dk- = dk for QF and dky = dk for QD

Bre Byr = B at QF and By, B,p = B at QD

Then: 1 1 )
(dQVj_ EﬁvD EﬂvF (dedsj
| -1 1
aen 4—,BhD EﬂhF/ di ds

This matrix relates the change in the tune to the change in

strength of the quadrupoles.
We can invert this matrix to calculate change in'quadrupole

field needed for a given change in tune
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( Dispersion (1)

v" Until now we have assumed that our beam has no energy or

momentum spread: A_E: = & 0
E P

v' Different energy or momentum particles have different radii of
curvature (p) in the main dipoles.

v' These particles no longer pass through the quadrupoles at the
same radial position.

v Quadrupoles act as dipoles for different momentum particles.
v' Closed orbits for different momentum particles are different.

v' This horizontal displacement is expressed as the dispersion
function D(s)

v D(s) is a function of ‘s’ exactly as p(s) is a funchi

hof ‘s’
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Dispersion (2)

v' The displacement due to the change in momentum at any

position (s) is given by:

Ax()=D(s) .A_FI)O

_/

Local radial
displacement due to
momentum spread

v" D(s) the dispersion function, is calculated from the lattice,

and has the unit of meters.

Dispersion function

v' The beam will have a finite horizontal size due to it’s

momentum spread.

v In the majority of the cases we have no vertical dipoles, and

so D(s)=0 in the vertical plane.
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Momentum compaction factor

v The change in orbit with the changing momentum means that
the average length of the orbit will also depend on the beam
momentum.

v’ This is expressed as the momentum compaction factor, a,
where:

A7 _ o A0

r > p

v a, tells us about the change in the length of radius of the
closed orbit for a change in momentum. .
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Chromaticity

v' The focusing strength of our quadrupoles depends on the beam

momentum, ‘p’

k

_dBy>< 1

———

dx Bp*

3.3356@)

v' Therefore a spread in momentum causes a spread in focusing

strength

)
K p

v But Q depends on the ‘k’ of the quadrupoles

AQ Ap

—a_

Q p

v The constant here is called : Chromaticity
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Chromaticity visualized

v The chromaticity relates the tune spread of the transverse
motion with the momentum spread in the beam.

Focusing
quadrupole in
horizontal plane

OP’Po
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A particle with a higher
momentum as the central
momentum will be deviated
less in the quadrupole and will
have a lower betatron tune

AQ _ AP

Q p
—_—— _/;'_ 2

,’/&

A particle with a lower
momentum as the central
momentum will be deviated
more in the quadrupole and will
have a higher betatron tune




Chromaticity calculated

v Remember [ AQ = %(ﬂdkds) and Ark = —A—Ff) —> |Ak =K pp
T :
v' Therefore E = __(IB ds J P \ The gradient seen by
Q Q P the particle depends on
its momentum

v This term is the Chromaticity ¢

v' To correct this tune spread we need to increase the

quadrupole focusing strength for higher momentum particles,
and decrease it for lower momentum particles.

v' This we will obtain using a Sextupole magnet
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e Magnets
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Sextupol

. v" Conventional Sextupole
L wk- from LEP, but looks

- " similar for other
‘warm’ machines.

v' ~ 1 meter long and a
few hundreds of kg.
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v' Correction Sextupole of
the LHC

v 1lcm, 10 kg, 500A at 2K
for a field of 1630 T/m?
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( Chromaticity correction

Final “corrected” By oy /BY - K(sz - B
uadrupole
”
\ X
(Sextupole)
By = Ks.x?

v" Vertical magnetic field versus horizontal displacement in a
quadrupole and a sextupole.
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( Chromaticity correction (2)

v’ The effect of the sextupole field is to increase the magnetic
field of the quadrupoles for the positive ‘x’ particles and
decrease the field for the negative ‘x’ particles.

v However, the dispersion function, D(s), describes how the
radial position of the particles change with momentum.

v Therefore the sextupoles will alter the focusing field seen by
the particles as a function of their momentum.

v' This we can use to compensate the natural chromaticity of the
machine.
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Sextupole & Chromaticity

v Inasextupole fory = O we have a field By = C.x2
v Now calculate ‘k’ the focusing gradient as we did for a

quadrupole: 1 dB,
~(Bp) dx
: 2 1 . R . dBy
v' Using |B,=CX%| which after differentiating gives d—= 2CX
X
1
v For k we now write |K=-—-2CX
(Bp)
v" We conclude that ‘k’ is no longer constant, as it depends on ‘x’
A
v So for a Ax we get |AK = (ZB—C)AX and we know that |AX= D(S)?p
Jo,
D(s) A
v' Therefore Ak = 2C x ( )>< P
(Bp) p
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Sextupole & Chromaticity

v We know that the tune changes with : |[AQ = %ﬁ(s)dkds
T

v' Where: |ds =sextupole length| and |dk = Ak = 2C x D(s) J Ap
(Bp) p

: 1 d*B
v’ Remember |B = (- x°| with CZE y 2y
X

v The effect of a sextupole with length | on the particle tune'Q
as a function of Ap/p is given by:

AQ 1 d’ By D(s) Ap
E
0 PO B0 1

v If we can make this term exactly balance the ral

chromaticity then we will have solved our pr
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Sextupole & Chromaticity (2)

v' There are two chromaticities:
v' horizontal 2 §,
v’ vertical 2> §,

v" However, the effect of a sextupole depends on P(s), which
varies around the machine

v Two types of sextupoles are used to correct the chromaticity.

v' One (SF) is placed near QF quadrupoles where b, is large
and B, is small, this will have a large effect on ¢,

v Another (SD) placed near QD quadrupoles, where py'is
large and B, is small, will correct €,

v' Also sextupoles should be placed where D(s) islarge, in order
to increase their effect, since Ak is proportionalito D(s)
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( Questions....Remarks...?

Hill ’s equation Lattices and tune
corrections
Sextupoles

O Dispersion and
chromaticity
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