AXEL-2023
 Introduction to Particle Accelerators

Resonances:
\checkmark Normalised Phase Space
\checkmark Dipoles, Quadrupoles, Sextupoles
\checkmark A more rigorous approach
\checkmark Coupling
\checkmark Tune diagram

Rende Steerenberg (BE/OP)

 28 November 2023
Normalised Phase Space

\checkmark By multiplying the y-axis by β the transverse phase space is normalised and the ellipse turns into a circle.

Phase Space \& Betatron Tune

\checkmark If we unfold a trajectory of a particle that makes one turn in our machine with a tune of $Q=3.333$, we get:

\checkmark This is the same as going 3.333 time around on the circle in phase space
\checkmark The net result is 0.333 times around the circular trajectory in the normalised phase space
$\checkmark q$ is the fractional part of Q
\checkmark So here $Q=3.333$ and $q=0.333$

What is a resonance?

\checkmark After a certain number of turns around the machine the phase advance of the betatron oscillation is such that the oscillation repeats itself.
\checkmark For example:
\checkmark If the phase advance per turn is 120° then the betatron oscillation will repeat itself after 3 turns.
\checkmark This could correspond to $Q=3.333$ or $3 Q=10$
\checkmark But also $Q=2.333$ or $3 Q=7$
\checkmark The order of a resonance is defined as ' n '

$$
n \times Q=\text { integer }
$$

$Q=3.333$ in more detail

1st turn

2nd turn

3rd turn

Third order resonant betatron oscillation

$$
3 Q=10, Q=3.333, q=0.333
$$

$Q=3.333$ in Phase Space

\checkmark Third order resonance on a normalised phase space plot

Machine imperfections

\checkmark It is not possible to construct a perfect machine.
\checkmark Magnets can have imperfections
\checkmark The alignment in the de machine has non zero tolerance.
\checkmark Etc...
\checkmark So, we have to ask ourselves:
\checkmark What will happen to the betatron oscillations due to the different field errors.
\checkmark Therefore we need to consider errors in dipoles, quadrupoles, sextupoles, etc...
\checkmark We will have a look at the beam behaviour as a function of ' Q '
\checkmark How is it influenced by these resonant conditions?

Dipole (deflection independent of position)

\checkmark For $\mathrm{Q}=2.00$: Oscillation induced by the dipole kick grows on each turn and the particle is lost ($1^{\text {st }}$ order resonance $Q=2$).
\checkmark For $Q=2.50$: Oscillation is cancelled out every second turn, and therefore the particle motion is stable.

Quadrupole (deflection α position)

\checkmark For $\mathrm{Q}=$ 2.50: Oscillation induced by the quadrupole kick grows on each turn and the particle is lost
($2^{\text {nd }}$ order resonance $2 Q=5$)
\checkmark For $\mathrm{Q}=2.33$: Oscillation is cancelled out every third turn, and therefore the particle motion is stable.

Sextupole (deflection \propto position²)

\checkmark For $\underline{Q}=2.33$: Oscillation induced by the sextupole kick grows on each turn and the particle is lost
(3 $3^{\text {rd }}$ order resonance $3 Q=7$)
\checkmark For $Q=2.25$: Oscillation is cancelled out every fourth turn, and therefore the particle motion is stable.
R. Steerenberg

More rigorous approach (1)

\checkmark Let us try to find a mathematical expression for the amplitude growth in the case of a quadrupole error:

More rigorous approach (2)

\checkmark So we have: $\Delta \mathrm{a}=l \cdot \beta \cdot \sin (\theta) \mathrm{a} \cdot \mathrm{k} \cdot \cos (\theta) \quad \therefore \begin{aligned} & \square \frac{\Delta a}{a}=\frac{\ell \beta k}{2} \sin (2 \theta) \\ & \checkmark \text { Each turn } \theta \text { advances by } 2 \pi Q\end{aligned}$
\checkmark On the $n^{\text {th }}$ turn $\theta=\theta+2 n \pi Q$
\checkmark Over many turns:

$$
\frac{\Delta a}{a}=\frac{\ell \beta k}{2} \sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))
$$

This term will be 'zero' as it decomposes in Sin and Cos terms and will give a series of + and - that cancel out in all cases where the fractional tune $q \neq 0.5$
\checkmark So, for $q=0.5$ the phase term, $2(\theta+2 n \pi Q)$ is constant:

$$
\sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))=\infty \quad \text { and thus: } \quad \frac{\Delta a}{a}=\infty
$$

More rigorous approach (3)

\checkmark In this case the amplitude will grow continuously until the particles are lost.
\checkmark Therefore we conclude as before that: quadrupoles excite $2^{\text {nd }}$ order resonances for $q=0.5$
\checkmark Thus for $Q=0.5,1.5,2.5,3.5, \ldots$ etc......

More rigorous approach (4)

\checkmark Let us now look at the phase θ for the same quadrupole error:
$2 \pi Q=$ phase angle over 1 turn $=\theta$ $\Delta \beta y^{\prime}=$ kick
$a=$ old amplitude $\Delta a=$ change in amplitude $2 \pi \Delta Q=$ change in phase y does not change at the kick

$$
y=a \cos (\theta)
$$

In a quadrupole $\Delta y^{\prime}=1 k y$
$s=\Delta\left(\beta y^{\prime}\right) \cos \theta$
$2 \pi \Delta Q=\frac{\Delta\left(\beta y^{\prime}\right) \cos \theta}{a} \rightarrow \Delta Q=\frac{1}{2 \pi} \cdot \frac{\beta \cdot \cos (\theta) \cdot l \cdot a \cdot k \cdot \cos (\theta)}{a}$

More rigorous approach (5)

\checkmark So we have: $\Delta Q=\frac{1}{2 \pi} \cdot \frac{\beta \cdot \cos (\theta) \cdot l \cdot a \cdot k \cdot \cos (\theta)}{a}$
\checkmark Since: $\cos ^{2}(\theta)=\frac{1}{2} \operatorname{Cos}(2 \theta)+\frac{1}{2}$ we can rewrite this as:
$\Delta Q=\frac{1}{4 \pi} \cdot l \cdot \beta \cdot k \cdot(\cos (2 \theta)+1)$, which is correct for the $1^{\text {st }}$ turn
\checkmark Each turn θ advances by $2 \pi Q$
\checkmark On the $n^{\text {th }}$ turn $\theta=\theta+2 n \pi Q$
\checkmark Over many turns:

$$
\Delta Q=\frac{1}{4 \pi} \ell \beta k\left[\sum_{n=1}^{\infty} \cos (2(\theta+2 \pi n Q))+1\right]
$$

\checkmark Averaging over many turns: $\Delta Q=\frac{1}{4 \pi} \beta \cdot k \cdot d s$

Stopband

$\checkmark \Delta Q=\frac{1}{4 \pi} \beta . k . d s, \begin{array}{r}\text { which is the expression for the change in } \\ \underline{Q} \text { due to a quadrupole... (fortunately !!!) }\end{array}$
\checkmark But note that Q changes slightly on each turn

$$
\Delta Q=\frac{1}{4 \pi} l \cdot \beta \cdot k(\cos (2 \theta)+1)
$$

Max variation 0 to 2
$\checkmark Q$ has a range of values varying by: \square
\checkmark This width is called the stopband of the resonance
\checkmark So even if q is not exactly 0.5 , it must not be too close, or at some point it will find itself at exactly 0.5 and 'lock on' to the resonant condition.

Sextupole kick

\checkmark We can apply the same arguments for a sextupole:
\checkmark For a sextupole $\Delta y^{\prime}=\ell k y^{2}$ and thus $\Delta y^{\prime}=\ell k a^{2} \cos ^{2} \theta$
\checkmark We get : $\frac{\Delta a}{a}=\ell \beta k a \sin \theta \cos ^{2} \theta=\frac{\ell \beta k a}{2}[\cos 3 \theta+\cos \theta]$
\checkmark Summing over many turns gives:

$$
\begin{array}{|l|}
\hline \frac{\Delta a}{a}=\frac{\ell \beta k a}{2} \sum_{n=1}^{\infty} \cos 3(\theta+2 \pi n Q)+\cos (\theta+2 \pi n Q) \\
\hline \text { resonance term } \\
\begin{array}{c}
1^{\text {st }} \text { order resonance } \\
\text { term }
\end{array} \\
\hline
\end{array}
$$

\checkmark Sextupole excite $1^{\text {st }}$ and $3^{\text {rd }}$ order resonance

R. Steerenberg

Octupole kick

\checkmark We can apply the same arguments for an octupole:
\checkmark For an octupole $\Delta y^{\prime}=\ell k y^{3}$ and thus $\Delta y^{\prime}=\ell k a^{3} \cos ^{3} \theta$
\checkmark We get : $\frac{\Delta a}{a}=\ell \beta k a^{2} \sin \theta \cos ^{3} \theta$
\checkmark Summing over many turns gives:

$\frac{\Delta a}{a} \propto \mathrm{a}^{2}(\cos 4(\theta+2 \pi \mathrm{nQ})+\cos 2(\theta+2 \pi \mathrm{nQ}))$
$\mathrm{q}=0.5$
$\mathrm{q}=0.25$
Amplitude squared
\checkmark Octupolar errors excite $2^{\text {nd }}$ and $4^{\text {th }}$ order resonance and are very important for larger amplitude particles.

Can restrict dynamic aperture

Resonance summary

Quadrupoles excite $2^{\text {nd }}$ order resonances
\checkmark Sextupoles excite $1^{\text {st }}$ and $3^{\text {rd }}$ order resonances
\checkmark Octupoles excite $2^{\text {nd }}$ and $4^{\text {th }}$ order resonances
\checkmark This is true for small amplitude particles and low strength excitations
\checkmark However, for stronger excitations sextupoles will excite higher order resonance's (non-linear)

Coupling

\checkmark Coupling is a phenomena, which converts betatron motion from one plane (horizontal or vertical) into motion in the other plane.
\checkmark Fields that will excite coupling are:
\checkmark Skew quadrupoles, which are normal quadrupoles, but tilted by 45° about it's longitudinal axis.
\checkmark Solenoidal (longitudinal magnetic field)

Skew Quadrupole

Solenoid; longitudinal field

Solenoid; longitudinal field (2)

Above:
The LPI solenoid that was used for the initial focusing of the positrons.
It was pulsed with a current of 6 kA for some 7 us, it produced a longitudinal magnetic field of 1.5 T .

At the right:
The somewhat bigger CMS solenoid

Coupling and Resonance

\checkmark This coupling means that one can transfer oscillation energy from one transverse plane to the other.
\checkmark Exactly as for linear resonances there are resonant conditions.

$$
n Q_{h} \pm m Q_{v}=\text { integer }
$$

\checkmark If we meet one of these conditions the transverse oscillation amplitude will again grow in an uncontrolled way.

A mechanical equivalent

\# We can transfer oscillation energy from one pendulum to the other depending on the strength ' k ' of the spring

General tune diagram

Realistic tune diagram

Measured tune diagram

R. Steerenberg

AXEL - 2023

Move a large emittance beam around in this tune diagram and measure the beam losses.

Not all resonance lines are harmful.

Conclusion

\checkmark There are many things in our machine, which will excite resonances:
\checkmark The magnets themselves
\checkmark Unwanted higher order field components in our magnets
\checkmark Tilted magnets
\checkmark Experimental solenoids (LHC experiments)
\checkmark The trick is to reduce and compensate these effects as much as possible and then find some point in the tune diagram where the beam is stable.

Questions....,Remarks...?

