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• Some of the Figures have been taken from papers published in peer reviews. The references 
are reported as:

Authors, Journal’s name and # of the paper

If there is anything you find interesting, I strongly encourage you to download the paper and 
read it!

• I also included some suggestions for more ‘pedagogical’ readings. The references are 
indicated as

Author, Title of the Book/Journal

• Please, ask question! Now or later: nrocco@fnal.gov
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Outline
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• Lepton - nucleon interactions 

• Modeling nuclear structure

• Ab - initio description of lepton - nucleus interactions

• Factorization approach + spectral function : QE
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Electron-nucleon scattering

• We start from a generic process: 1+2 ➜ 3+4

• The cross section can be written as 

e−(E, k)

p(Ep, p)

e−(E′ , k′ )

p(Ep′ , p′ )

F. Close, An Introduction to quark and partons
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• The squared amplitude expression is given by

• For scattering of an electron on a nucleon at rest in the lab frame:
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Electron-nucleon scattering
p(Ep′ , p′ )

|A|2 =
1

4
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• How do we define the leptonic and hadronic tensor? Let’s start from the leptonic one

• We can put together what we learned and rewrite the squared amplitude as:

ū(k0,�0)�µu(k,�)

✕

✕

e2 gµ⌫

q2q q

ū(p0,↵0)�µ(q)u(p,↵) = ū(p0,↵0)
h
F1�

µ + i
�µ⌫q⌫
2M

F2

i
u(p,↵)

e−(E, k) e−(E′ , k′ ) p(Ep, p)

=
e4

q4
LμνWμν

Lμν =
1
2

Tr[k′ γμkγν] = 2(k′ 
μkν + kμk′ 

ν − gμνk′ ⋅ k)
We neglected the electron mass in the expression of the leptonic tensor
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Electron-nucleon scattering

p(Ep′ , p′ )

q

p(Ep, p)
ū(p0,↵0)�µ(q)u(p,↵) = ū(p0,↵0)

h
F1�

µ + i
�µ⌫q⌫
2M

F2
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u(p,↵)

F p,n
1 =

Gp,n
E � q2/(4M2)Gp,n

M

1� q2/(4M2)
F p,n
2 =

Gp,n
M �Gp,n

E

1� q2/(4M2)

• The Dirac and Pauli form factors are corrections to “point-like coupling’’ which comes from the fact 
that the nucleon has an internal structure

• Alternatively, F1 and F2 are written as a combination of the electric and magnetic form factors:

• The accurate determination of GE and GM is an important focus of both experimental and 
theory programs (see slide 7)

• The form factors are related to the spatial distributions of the charge and magnetization in the 
proton, and in the non relativistic limit are simply the Fourier transforms of these distributions. 
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Hadronic tensor

• The most general expression for the hadronic tensor reads

10

General expression for the inclusive hadron tensor

pμ

qμ

W (q2, p
μ
qμ )

Completely general and well-defined, but structure functions W
i
 depend on interaction

→ Constraints come at level of the current

Wμν = W1gμν +
W2

M2
pμpν + i

ϵμναβpαqβ

2M2
W3 +

W4

M2
qμqν +

W5

M2
(pμqν − pνqμ)

• For the electromagnetic case, we can use current conservation, this allows us the rewrite the 
hadronic tensor as

Wμν = W1(gμν −
qμqν

q2 ) +
W2

M2 (pμ −
p ⋅ q
q2

qμ)(pν −
p ⋅ q
q2

qν)
Using this general expression of the hadronic tensor, the differential electron-proton cross section reads

dσ
dE′ dΩ

=
4α2E′ 

2

Q4 [2W1 sin2 θ
2

+ W2 cos2 θ
2 ]

Note that for elastic scattering, the structure functions read:

W1 = −
q2

4M2
(F1 + F2)2δ(ω +

q2

2M ) W2 = (F2
1 −

q2

4M2
F2

2)δ(ω +
q2

2M )
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Hadronic tensor

• The most general expression for the hadronic tensor reads
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Use current conservation to show that the hadron tensor 
reduces to this expression for the electromagnetic case

Suggested problem:
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Hadronic tensor

• The most general expression for the hadronic tensor reads
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Show that the energy and momentum delta function can be 
rewritten in the following way for an elastic scattering on a 

nucleon at rest: 
δ(4)(p′ − p − q) →
1

2mN
δ(ω + q2/(2mN))

Suggested problem:
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Summary of electron-nucleon scattering

`�(k) +N(p) ! `�(k0) +N(p0)
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⇣ d�
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i

Scattering on a point-like spinless target

Scattering on a point-like 1/2 
spin target

• Protons and neutrons have an internal structure: described by electric and magnetic form factors

Rosenbluth separation

• We consider the process:

⇣ d�

d⌦

⌘

Mott
=

↵2

4E2
k sin

4 ✓/2
cos2

✓

2
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Determination of nucleon form factors
• A reduced cross section can be defined as 

⇣ d�

d⌦

⌘
=

⇣ d�

d⌦

⌘

Mott
⇥ ✏G2

E + ⌧G2
M

✏(1 + ⌧)

✏ =
h
1 + 2(⌧ + 1) tan2

✓

2

i1

• Measuring angular dependence of the cross section 
at fixed Q2

• In Born approximation: GE2 is the slope and the intercept is τ GM2 

the end cap contributions, but normalize the contribution to
the LH2 spectrum at large !p, where the hydrogen con-
tribution is negligible. While the shape of the bremsstrah-
lung spectrum differs slightly between the dummy and
LH2 targets, the effect is only noticeable near the end
point, and a small uncertainty due to this difference is
included in the systematic uncertainties.

After removing the end cap background, the simulated
spectra from the combination of "p ! #0p and "p ! "p
are normalized to the low-momentum sides of the !p
spectra (taking into account the elastic radiative tail).
Removing this background yields clean spectra of elastic
events. We examine a window in !p around the elastic
peak and extract the elastic cross section by taking the
value used in the simulation, scaled by the ratio of counts in
the data to counts in the simulated spectrum. The upper
edge of the window varied from 5 to 15 MeV above the
peak, and is scaled with the resolution of the peak. The
lower edge goes from 10 to 16 MeV below the peak, and is
chosen to minimize the radiative correction while exclud-
ing background events. We also varied the !p windows,
and the change in the extracted cross sections was consis-
tent with the uncertainties we have assigned to the cut-
dependent corrections.

The yield is corrected for dead time in the data acquis-
ition system as well as several small inefficiencies. Correc-
tions for tracking efficiency, trigger efficiency, and particle
identification cuts were small (<2%) and independent of ".
About 5% of the protons are absorbed in the target and
detector stack, mainly in the hodoscopes and the aerogel
detector. We calculate the absorption in the target and
detector materials, which is " independent except for the
target absorption which varies by !0:1%. Radiative cor-
rections to the cross section are "20%, with a 5%–10% "
dependence, smaller than in previous Rosenbluth separa-
tions where the electron was detected. We also require a
single clean cluster of hits in each drift chamber plane to
avoid events where the resolution is worsened by noise in
the chambers. This reduces the non-Gaussian tails, but
leads to an inefficiency of roughly 7%, with a small
(0.25%) " dependence, possibly related to the variation
of rate with ". We correct the yield for the observed
inefficiency and apply a 100% uncertainty on the " depen-
dence of the correction.

The absolute uncertainty on the extracted cross sections
is approximately 3%, dominated by corrections for the
angular acceptance (2%), radiative processes (1%), proton
absorption in the target and detectors (1%), background
processes (1%), and the uncertainty in the integrated lumi-
nosity (1%). We apply a tight cut on the solid angle, using
only the data in the central 1.6 msr of the total #6 msr
acceptance. This cut limits the elastic data to the region of
100% acceptance, but leads to the relatively large uncer-
tainty in the size of the software-defined solid angle.
Because the solid angle is identical for all " values at

each Q2, this uncertainty affects the absolute cross section,
but not the extraction of GE=GM.

The largest random uncertainties, where the error can
differ at different " values, are related to the tracking
efficiency (0.2%), uncertainty in the scattering angle
(0.2%), subtraction of the inelastic proton backgrounds
(0.2%), and radiative corrections (0.2%). The total random
systematic uncertainty is 0.45%, with typical statistical
uncertainties of 0.25% at Q2 $ 2:64 GeV2 and 0.40% at
Q2 $ 4:1 GeV2. Data taken at the lowest beam energy
have an additional uncertainty (0.3%) because these data
were taken at lower beam currents (30–50 $A), and so are
sensitive to nonlinearity in the beam current measurements
and have different target heating corrections.

The reduced cross sections, %R $ &G2
M % "G2

E, are
shown in Fig. 2. The uncertainties are the statistical and
random systematic uncertainties. Some corrections lead to
correction to %R that varies nearly linearly with ". This
modifies the slope, but does not contribute to the scatter of
the points or deviations from linearity. The main uncer-
tainties in the extracted slope come from the " dependence
of the radiative corrections (0.3%), background subtrac-
tion, (0.25%), tracking efficiency (0.25%), and the effect of
beam energy or scattering angle offset (0.25%). Note that
we do not include the uncertainty related to two-photon
exchange, which we will discuss later. The combined
0.55% uncertainty in the slope of the reduced cross section

FIG. 2 (color online). Reduced cross sections as a function of
". The solid line is a linear fit to the reduced cross sections, the
dashed line shows the slope expected from scaling
($pGE=GM $ 1), and the dotted line shows the slope predicted
by the polarization transfer experiments [6].

PRL 94, 142301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
15 APRIL 2005

142301-3

polarization transfer experiment

previous Rosenbluth

�R = ✏(1 + ⌧)
�

�Mott
= ✏G2

E + ⌧G2
M

✐ Qattan et al.,PRL 94, 142301 (2005) 

• The virtual photon polarization parameter is 

11
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Neutrino-Nucleon scattering

12

l𝜈

N N’
W

Charge Current (CC)

Z

𝜈

N N’

𝜈

Neutral Current (NC)

• Exchange of the W boson 

• Lepton produced has the same flavor of 
the neutrino

• Initial and final nucleon have different isospin

• Exchange of the Z boson 

• Independent of the neutrino flavor

• Initial and final nucleon have same isospin

F. Close, An Introduction to quark and partons
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Neutrino-Nucleon scattering

13

l𝜈

N N’

𝜈

N N’

𝜈

d2�

dE0d⌦0 =
1

16⇡2

G2

2
Lµ⌫W

µ⌫

G = GF G = GF cos ✓c

• Leptonic Tensor:


Lμν = 2[kμk′ ν + k′ μkν − gμνk ⋅ k′ ± iϵμναβk′ 
αkβ]

• Hadronic Tensor:

• Differential cross section for CC and NC processes

• For NC • For CC 

Charge Current (CC)

Neutral Current (NC)
⌫/⌫̄

GF = 1.1803⇥ 10�5 GeV�2 , cos ✓c = 0.97425

Wμν = W1gμν +
W2

M2
pμpν + i

ϵμναβpαqβ

2M2
W3 +

W4

M2
qμqν +

W5

M2
(pμqν − pνqμ)
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Neutrino-Nucleon scattering

14

hN 0|Jµ|Ni = ū(p0)�µu(p) = Jµ
V + Jµ

A

Jµ
V = F1�

µ + i�µ⌫q⌫
F2

2M

• Electroweak current operator:

• The vector contribution is given by: • The axial contribution is given by:

Jµ
A = ��µ�5FA � qµ�5

FP

M

Vector Axial
q

N’ (Ep’,p')N (Ep,p)

T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel, Electron- and neutrino-nucleus 
scattering from the quasielastic to the resonance region, Phys. Rev. C 79, 034601 
(2009). 

• General expression for both neutral- and charge current processes. The iso-spin dependence 
of these form factors is different (see next slide). 

• The Vector current is the same of the electromagnetic: Conserved Vector Current hypothesis
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Neutrino-Nucleon scattering

15

N N’

Z0

N N’

W±

N N’

ɣ

F1 =
1

2
[FS

1 + FV
1 ⌧z]

F2 =
1

2
[FS

2 + FV
2 ⌧z]

F1 = FV
1 ⌧±

F2 = FV
2 ⌧±

FA = FA⌧±

FP = FP ⌧±

F1 =
1

2
[�2sin2✓WFS

1 + (1� 2sin2✓W )FV
1 ⌧z]

F2 =
1

2
[�2sin2✓WFS

2 + (1� 2sin2✓W )FV
2 ⌧z]

FA =
1

2
FA⌧z

FP =
1

2
Fp⌧z

• EM • CC • NC

• PCAC:• We used the Conserved Vector Current hypothesis: 

FV
1 ⌧z ! FV

1 ⌧± , FV
2 ⌧z ! FV

2 ⌧± FP =
2m2

N

(m2
⇡ � q2)

FA

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov

From theory to experiment

16

µ

p

𝜈µ

n

Free nucleon scattering case 

6��=HOOHU�_�1XFOHDU�(ĳHFWV�LQ�1HXWULQR�([SHULPHQWV�� ��������

/LIH�LV�0RUH�&RPSOLFDWHG

� jPI�dQEjkgI�YI<pQ[O�jPI�[kEYIkh�E<[�
DI�fkQjI�GQNNIgI[j�Ng]Z�qP<j�
P<ddI[h�<j�jPI�dgQZ<gs�pIgjIr

� qI�[IIG�j]�q]ggs�<D]kj�<YY�]N�jPIhI�
INNIEjh�Q[�]kg�[IkjgQ[]�IrdIgQZI[jh

¥���/EPkXg<Nj���+/�ÃÁÂÊ¦
Nuclear model describing the target nucleus


Different reaction mechanisms depending on the momentum transferred to the the nucleus


Final state interactions: describe how the particles  propagate through the nuclear medium
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The Nucleus internal structure

17

Nuclei are strongly interacting many body systems exhibiting fascinating properties

n
<latexit sha1_base64="YpuTIWIRm4MnQGf9rk1VPmcNIak="></latexit><latexit sha1_base64="YpuTIWIRm4MnQGf9rk1VPmcNIak="></latexit><latexit sha1_base64="YpuTIWIRm4MnQGf9rk1VPmcNIak="></latexit><latexit sha1_base64="YpuTIWIRm4MnQGf9rk1VPmcNIak="></latexit> p

<latexit sha1_base64="Iet7OPTkf1gkRuQASJltGdM+Yxc="></latexit><latexit sha1_base64="Iet7OPTkf1gkRuQASJltGdM+Yxc="></latexit><latexit sha1_base64="Iet7OPTkf1gkRuQASJltGdM+Yxc="></latexit><latexit sha1_base64="Iet7OPTkf1gkRuQASJltGdM+Yxc=">AAACb3icdVFdSxtBFJ1sa9VY69eDDwUZGgr6EnajaHwL9MVHhUYD2UVmZ2+SwflYZu4qYdlf4Kv9cf0Z/Qed3aRgpF4YOJx7DufOvWkuhcMw/N0KPnxc+7S+sdne+rz9ZWd3b//WmcJyGHIjjR2lzIEUGoYoUMIot8BUKuEuffhR9+8ewTph9E+c55AoNtViIjhDT93k97udsBudn/Yv+7QGvX64AGcX0SWNumFTHbKs6/u91ijODC8UaOSSOTeOwhyTklkUXELVjgsHOeMPbApjDzVT4JKymbSi3z2T0Ymx/mmkDfvaUTLl3FylXqkYztzbXk3+rzcucNJPSqHzAkHzRdCkkBQNrb9NM2GBo5x7wLgVflbKZ8wyjn45KylT0M0EK2QdiMZIV7XbsYYnbpRiOivj9BF4NY4Sj4zMaqORtOxEVfVGN2PY6FaFsacXcm/wt/i3cPo+uO11I49vzjqDwfIqG+Qr+UaOSUQuyIBckWsyJJwAeSYv5FfrT3AYHAV0IQ1aS88BWang5C9T0L+v</latexit>

strong field

Each nucleon is made of three quarks held 
together by strong interactions→mediated by 
gluons 

The nucleus is held together by the strong interactions between quark and gluons of neighboring 
nucleons 

Nuclear Physicists effectively describe the interactions between protons and neutrons in terms 
of exchange of pions 

The nucleus is formed by protons and neutrons: 
nucleons.

Nuclear chart. Magic numbers N or Z= 2, 8, 20, 
28, 50 and 126; major shell complete and are 
more stable than other elements

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov

Theory of lepton-nucleus scattering

18

• The cross section of the process in which a lepton scatters off a nucleus is given by

|0i = | A
0 i , |fi = | A

f i, | N
p , A�1

f i, | ⇡
k , 

N
p , A�1

f i . . .

`

`0

�, Z,W±

| 0i

| f i

The initial and final wave functions describe many-body states:

d� / L↵�R↵�

Leptonic Tensor: is the same as before, completely 
determined by lepton kinematics 

Hadronic Tensor: nuclear response function

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

For inclusive reactions, the hadronic final state is not detected. We need to sum over all the 
possible ones
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Comparing electron- and neutrino-nucleus 

19

• We start by defining the nuclear response functions, for a given value of q and ω

• Electron case we write the inclusive double differential cross section as:

d�

dE0d⌦
= �Mott

"✓
q2

q2

◆2

RL +

✓
�q2

2q2
+ tan2 ✓

2

◆
RT

#

where: RL = W00 , RT = Wxx +Wyy

• Neutrino case: 

⇣ d�

dE0d⌦

⌘

⌫/⌫̄
=

G2

4⇡2

k0

2E⌫

h
L̂CCRCC + 2L̂CLRCL + L̂LLRLL + L̂TRT ± 2L̂T 0RT 0

i
,

• Where the nuclear responses are given by 

RCC = W 00

RCL = �1

2
(W 03 +W 30)

RT 0 = � i

2
(W 12 �W 21) ,  ,RLL = W 33

RT = W 11 +W 22

Wµ⌫(q,!) =
X

f

h0|(Jµ)†(q,!)|fihf |J⌫(q,!)|0i�(4)(p0 + ! � pf )
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Initial state: global Fermi gas 

• Simple picture of the nucleus: only 
statistical correlations are retained 
(Pauli exclusion principle)

• Protons and neutrons are considered 
as moving freely within the nuclear 
volume

• The nuclear potential wells are rectangular: constant inside the nucleus and goes sharply to 
zero at its edge 

• The energy of the highest occupied state is the Fermi energy:  EF

• The difference B’ between the top of the well and the Fermi level is constant for most nuclei 
and is just the average binding energy per nucleon B’/A ~ 7-8 MeV

C. Bertulani, Nuclear Physics in a Nutshell

2

The basic concept of the FermiThe basic concept of the Fermi--gas modelgas model

The theoretical concept of a Fermi-gas may be applied for systems of weakly 
interacting fermions, i.e. particles obeying Fermi-Dirac statistics leading to the Pauli
exclusion principle !!!!
• Simple picture of the nucleus:
— Protons and neutrons are considered as moving freely within the nuclear volume. 
The binding potential is generated by all nucleons
— In a first approximation, these nuclear potential wells are considered as
rectangular: it is constant inside the nucleus and stops sharply at its edge 
— Neutrons and protons are distinguishable fermions and are therefore situated in 
two separate potential wells

— Each energy state can be ocupied by two
nucleons with different spin projections
— All available energy states are filled by 
the pairs of nucleons !!!! no free states , no 
transitions between the states
— The energy of the highest occupied state 
is the Fermi energy EF

— The difference B‘ between the top of the well and the Fermi level is constant for 
most nuclei and is just the average binding energy per nucleon B‘/A = 7–8 MeV.

20
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Initial state: Local Fermi gas 

pF =
⇣9⇡ · n

4A

⌘1/3
· ~
R0

���������������������������������

� � � � � � � �

ᅻ վփ	ԡ
(
7K

ϯ )

ԡ (7K)

2tT

• A spherically symmetric nucleus can be approximated 
by concentric spheres of a constant density. 

More likely to find a particle r ~ rch~ 2.5 fm
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pF = ~
⇣
3⇡2⇢(r)

n

A

⌘1/3

• Global Fermi Gas • Local Fermi Gas
Figure by T. Golan
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Initial state: shell Model 

• As in the Fermi Gas model: the nucleons move within the nucleus independently of each other

• Difference: the nucleons are not free: subject to a central potential

• Each nucleon moves in an average potential created by the other nucleons, the potential 
should be chosen to best reproduce the experimental results

H =
X

i

p
2
i

2m
+

X

i<j

vij + . . . H =
X

i

p
2
i

2m
+

AX

i

Ui +Hres

• We solve the Schrödinger Equation:

H  = E  
E = E1 + E2 + . . .+ EA

 (1, . . . , A) = A[�1(1) . . .�A(A)]
{
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Initial state: shell Model 
• Example: Particles are subject to an harmonic oscillator potential

U(r) =
1

2
m!2r2  The frequency should be adapted to the mass number A

V0, r, a, are adjustable parameters chosen to best 
reproduce the experimental results

 (r) =
u(r)

r
Y m
l (✓,�)

d2u

dr2
+

(
2m

~2 [E � U(r)]� l(l + 1)

r2

)
u(r) = 0

Enl = ~!
⇣
2n+ l � 1

2

⌘

V = V0/[1 + exp[(r �R)/a]

• We will seek solutions of the type 

• Solving the Schrödinger Equation reduces to a solution of u:

Eigenvalues

FIG. 5: (Color online) Woods-Saxon potential in H (solid line) and harmonic oscillator potential

in HHO
0 (dashed line) as a function of r.

The main idea for using the Rayleigh-Schrödinger perturbation theory [156] to investigate

the spin symmetry (SS) and PSS in single-particle Hamiltonian as well as their breaking in

atomic nuclei can be found in Ref. [135]. Following this idea, the Hamiltonian H is split as

H = H0 +W, (34)

where H0 conserves the exact PSS and W is identified as the corresponding symmetry

breaking potential. The condition
∣

∣

∣

∣

Wmk

Ek − Em

∣

∣

∣

∣

≪ 1 for m ̸= k (35)

with Wmk = ⟨ψm|W |ψk⟩ determines whether W can be treated as a small perturbation and

governs the convergence of the perturbation series [156].

For the present case, it has been analytically shown in Section IIC that the Hamiltonian

with harmonic oscillator (HO) potentials is one of the exact PSS limits. Thus, one has

HHO
0 = −

1

2M

[

d2

dr2
+
κ(κ+ 1)

r2

]

+
M

2
ω2r2 + V (0), (36)

and WHO is just the difference between H and HHO
0 . To minimize the perturbations to the

sdg states, the coefficient ω is chosen as 1.118×41A−1/3 MeV, and the trivial constant V (0)

is taken as −73 MeV, as illustrated in Fig. 5. Although the symmetry breaking potential

WHO diverges at r → ∞ due to the parabolic behavior of HHO
0 , the property that the bound

state wave functions decay exponentially at large radius leads to convergent results of the

matrix elements Wmk.

14

• A more realistic potential is the Wood Saxon:

Spherical Harmonics

Physical Review C 87(1):014334
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Nuclear Shell Model

1s (ms=0)    Z=2

The lowest level, s shell, can contain 2 protons

H =
X

i

p
2
i

2m
+
X

i

V (ri)

Our assumption: central potential

 n is the principal quantum number, l orbital 
momentum, m magnetic quantum number
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Nuclear Shell Model
The p shell can contain up to 6 protons

We explained the first two magic numbers: 2 and 8. 
We can follow the same strategy for the Z=20 case; 
but at the next step we obtain Z=40 while 
experimentally Z=50  

Our assumption: central potential

H =
X

i

p
2
i

2m
+
X

i

V (ri)
1s (ms=0)  

1p (mp=-1,0,1) 

Z=8 

 n is the principal quantum number, l orbital 
momentum, m magnetic quantum number
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Nuclear Shell Model
The p shell can contain up to 6 protons Our assumption: central potential

H =
X

i

p
2
i

2m
+
X

i

V (ri)

✐ Maria Goeppert Mayer poses with her colleagues in front of Argonne’s 

Physics building.

In 1963, Goeppert Mayer, Jensen, and Wigner shared 
the Nobel Prize for Physics "for their discoveries 
concerning nuclear shell structure."

The solution to the puzzle lies in the spin-orbit 
coupling. This effect in the nuclear potential is 20 
times larger then in Atomic Physics

V (r) ! V (r) +W (r)L · S

The spin-orbit introduces an energy split which 
modifies the shell structure and reproduces magic 
number up to Z=126

We explained the first two magic numbers: 2 and 8. 
We can follow the same strategy for the Z=20 case; 
but at the next step we obtain Z=40 while 
experimentally Z=50  

1s (ms=0)  

1p (mp=-1,0,1) 

Z=8 
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(e,e’p) scattering experimentsVOX.UME 13,NUMSER 10 PHYSICAL REVIK%' LETTERS 7 SEPTEMBER 1964
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FIG. 2. Electron-proton coincidence counting rate
per 10~' equivalent quanta at 550 MeV as a function of
the incident energy. The dashed lines indicate the
contributions of the various shells and the background
as explained in the text.

which is naturally very narrow, has a width here
of about 12 MeV, only slightly larger than the
calculated resolution. The contribution of the
two 1s protons is not clearly separated with such
a resolution. Our results are, however, fully
consistent with its presence at the binding ener-
gy and with the width observed in the (p, 2p) ex-
periments and a relative height calculated by a
Monte Carlo program on our IBM-7040 computer.
The calculation is based on the impulse approxi-
mation assuming momentum distributions for the
s and p protons fitting the (p, 2p) results' and
integrating over the energies and angles fixed by
our apparatus. The counting rate on the C"P
peak was about two counts per minute per elec-
tron momentum channel and agrees within a fac-
tor two with that calculated. An assumed back-
ground is shown in Fig. 2. The origin of this
background is not yet clear, but it comes at
least partly from the multiple scattering of pro-
tons before leaving the original nucleus. This
effect is enhanced with respect to existing (P, 2P)
results because of the large solid angle of our
proton detector, since the multiply scattered

protons have a wider angular distribution.
For Al ' the spectrum shows one clear peak,

and bumps near 30- and 60-MeV binding energy.
%e assign the peak to the five protons which, ac-
cording to the shell model, are in the outermost
2s-1d shell, and the bumps to the six 1P protons
and the two 1s protons, respectively. The posi-
tion and width of the 2s-1d peak agrees with
those observed in (P, 2P) experiments; the 1s and
1P have not been seen with that reaction. After
subtracting an estimated background, we obtain
a good fit to the data with peaks at 14.5-, 32-,
and 59-MeV binding energy, with total natural
widths of 7, 17, and 21 MeV, respectively, and
areas in the ratio of 1:0.9:0.4. The ratio of the
number of protons in the shells is 1:1.2:0.4, in
reasonable agreement taking into account absorp-
tion in the nucleus.
Aside from the rough agreement of the ratios

and absolute areas of the C" and Al" peaks with
the expected values, the most interesting new
results are the binding energies of the 1s and 1P
peaks in Al". The position of the P peak falls
roughly where expected extrapolating in Z from
nearby nuclei, in which it has been measured
through (p, 2p) reactions, and it is broadened
as expected from the P„,-P3» separation and the
fact that the nucleus is heavily distorted. It is
worthwhile noting that the P and s peaks are not
resolved because of their natural width and not
for experimental reasons. The fact that the s
peak seems to fall nearly on a linear extrapola-
tion of the (P, 2P) results from He4 to 0", how-
ever, is much more informative. Its observed
binding energy of -60 MeV is already consider-
ably greater than the -45-MeV well depth usual-
ly assigned to the shell-model. potential, pre-
sumably indicating an effective proton mass of
less than W.6 free masses in the s shell of Al '.
The curve representing the 1s binding energy as
a function of Z must level off eventually, and it
will be most interesting to follow it to heavier
nuclei. The width of the observed s peak of
roughly 20 MeV (compared with 14 MeV in 0",
for instance) gives some hope that the lifetime of
the 1s hole is becoming short sufficiently slowly
as to permit observation of this shell to consid-
erably higher Z.
%e acknowledge the help given to the experi-

ment by the staff of the Frascati synchrotron in
running the machine according to strict stability
requirements.
One of us (P.H. ) wishes to express his grati-

tude to Comitato Nazionale per 1'Energia Nucle-

342

1s1/2

1p3/2

1p1/2

e
e’

p

• (e,e’p) experiments are extremely important to 
investigate the internal structure of the nucleus  

• The peak coming from four 1p protons is visible

• The contribution of the two 1s protons is not 
clearly separated with this resolution  

U.Amaldi et al, Phys. Rev. Lett. 13, 10 (1964)  

12C

• Assuming NO FSI the energy and momentum of 
the initial nucleon can be identified with the 
measured pmiss and Emiss
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(e,e’p) scattering experiments
• Electron and proton experiments also pinned down the limitations of MF approaches

• The large-momentum (short-range) component of the wave 
function is dominated by the presence of Short Range Correlated 
(SRC) pairs of nucleons

12

kF

(Fermi-gas	like)

Why	SRC?

21

(semi)	Exclusive	2N-SRC	Studies
Breakup	the	pair	=>	

Detect	both	nucleons	=>	
Reconstruct	‘initial’	state

‘leading’

‘recoil’

136 Many-body theory exposed!

Fig. 7.6 Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5 demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5, however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4. A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6. The results in Fig. 7.6 indicate
that there is an essentially global reduction of the sp strength of about
35% for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4Most experiments have been performed on closed-shell nuclei.

• Quenching of the spectroscopic factors of valence 
states has been confirmed by a number of high resolution 
(e,e’p) experiments 

• Semi-exclusive 2N-SRC 
experiments at x>1 allows to 
detect both nucleons and 
reconstruct the initial state

• Confirmed that the high 
momentum tail of the 
nuclear wave function 
consists mainly of 2N-SRC 

Subedi et al., Science 320, 1476 (2008) 

Figure by Or Hen28
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(e,e’p) scattering experiments

Figure by Or Hen

nuclei. This backward peak is a strong signature
of SRC pairs, indicating that the two emitted
protons were largely back-to-back in the initial
state, having a large relative momentum and a
small center-of-mass momentum (8, 9). This is a
direct observation of proton-proton (pp) SRC
pairs in a nucleus heavier than 12C.
Electron scattering fromhigh–missing-momentum

protons is dominated by scattering from protons
in SRC pairs (9). The measured single-proton
knockout (e,e′p) cross section (where e denotes
the incoming electron, e′ the measured scattered
electron, and p the measured knocked-out pro-
ton) is sensitive to the number of pp and np SRC
pairs in the nucleus, whereas the two-proton
knockout (e,e′pp) cross section is only sensitive to
the number of pp-SRC pairs. Very few of the
single-proton knockout events also contained a
second proton; therefore, there are very few
pp pairs, and the knocked-out protons predom-
inantly originated from np pairs.
To quantify this, we extracted the [A(e,e′pp)/

A(e,e′p)]/[12C(e,e′pp)/12C(e,e′p)] cross-section dou-
ble ratio for nucleus A relative to 12C. The double
ratio is sensitive to the ratio of np-to-pp SRC
pairs in the two nuclei (16). Previous measure-
ments have shown that in 12C nearly every high-
momentum proton (k > 300 MeV/c > kF) has a
correlated partner nucleon, with np pairs out-
numbering pp pairs by a factor of ~20 (8, 9).
To estimate the effects of final-state interac-

tions (reinteraction of the outgoing nucleons in
the nucleus), we calculated attenuation factors
for the outgoing protons and the probability of
the electron scattering from a neutron in an np
pair, followed by a neutron-proton single-charge
exchange (SCX) reaction leading to two outgoing
protons. These correction factors are calculated
as in (9) using the Glauber approximation (22)
with effective cross sections that reproduce pre-
viously measured proton transparencies (23), and
using themeasured SCX cross section of (24).We
extracted the cross-section ratios and deduced the
relative pair fractions from the measured yields
following (21); see (16) for details.
Figure 3 shows the extracted fractions of np

and pp SRC pairs from the sum of pp and np
pairs in nuclei, including all statistical, systematic,
and model uncertainties. Our measurements are
not sensitive to neutron-neutron SRC pairs. How-
ever, by a simple combinatoric argument, even in
208Pb these would be only (N/Z)2 ~ 2 times the
number of pp pairs. Thus, np-SRC pairs domi-
nate in all measured nuclei, including neutron-
rich imbalanced ones.

The observed dominance of np-over-pp pairs
implies that even in heavy nuclei, SRC pairs are
dominantly in a spin-triplet state (spin 1, isospin
0), a consequence of the tensor part of the nucleon-
nucleon interaction (17, 18). It also implies that
there are as many high-momentum protons as
neutrons (Fig. 1) so that the fraction of protons
above the Fermi momentum is greater than that
of neutrons in neutron-rich nuclei (25).
In light imbalanced nuclei (A≤ 12), variational

Monte Carlo calculations (26) show that this re-
sults in a greater average momentum for the
minority component (see table S1). The minority
component can also have a greater average mo-
mentum in heavy nuclei if the Fermimomenta of
protons and neutrons are not too dissimilar. For
heavy nuclei, an np-dominance toy model that
quantitatively describes the features of the mo-
mentum distribution shown in Fig. 1 shows that
in imbalanced nuclei, the average proton kinetic
energy is greater than that of the neutron, up to
~20% in 208Pb (16).
The observed np-dominance of SRC pairs in

heavy imbalanced nuclei may have wide-ranging
implications. Neutrino scattering from two nu-
cleon currents and SRC pairs is important for the
analysis of neutrino-nucleus reactions, which are
used to study the nature of the electro-weak in-
teraction (27–29). In particle physics, the distribu-
tion of quarks in these high-momentum nucleons
in SRC pairs might be modified from that of free
nucleons (30, 31). Because each proton has a
greater probability to be in a SRC pair than a
neutron and the proton has two u quarks for
each d quark, the u-quark distribution modifica-
tion could be greater than that of the d quarks
(19, 30). This could explain the difference be-
tween the weak mixing angle measured on an
iron target by the NuTeV experiment and that of
the Standard Model of particle physics (32–34).
In astrophysics, the nuclear symmetry energy

is important for various systems, including neu-
tron stars, the neutronization of matter in core-
collapse supernovae, and r-process nucleosynthesis
(35). The decomposition of the symmetry energy
at saturation density (r0 ≈ 0.17 fm−3, the max-
imum density of normal nuclei) into its kinetic
and potential parts and its value at supranuclear
densities (r > r0) are notwell constrained, largely
because of the uncertainties in the tensor com-
ponent of the nucleon-nucleon interaction (36–39).
Although at supranuclear densities other effects
are relevant, the inclusion of high-momentum
tails, dominated by tensor-force–induced np-SRC
pairs, can notably soften the nuclear symmetry

energy (36–39). Our measurements of np-SRC
pair dominance in heavy imbalanced nuclei can
help constrain the nuclear aspects of these cal-
culations at saturation density.
Based on our results in the nuclear system, we

suggest extending the previous measurements of
Tan’s contact in balanced ultracold atomic gases
to imbalanced systems in which the number of
atoms in the two spin states is different. The
large experimental flexibility of these systems will
allow observing dependence of the momentum-
sharing inversion on the asymmetry, density,
and strength of the short-range interaction.
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Fig. 3. The extracted
fractions of np (top)
and pp (bottom) SRC
pairs from the sum of
pp and np pairs in
nuclei.The green and
yellow bands reflect
68 and 95% confidence
levels (CLs), respec-
tively (9). np-SRC pairs dominate over pp-SRC pairs in all measured nuclei.
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extractions of nðkÞ. We can avoid this model dependence
by making comparisons between nuclei in a region where
the kinematics limit the scattering to k > kF [5,26]. If these
high-momentum components are related to two-nucleon
short-range correlations (2N-SRCs), where two nucleons
have a large relative momentum but a small total momen-
tum due to their hard two-body interaction, then they
should yield the same high-momentum tail whether in a
heavy nucleus or a deuteron.

The first detailed study of SRCs combined data interpo-
lated to fixed kinematics from different experiments at
SLAC [26]. A plateau was seen in the ratio ð!A=AÞ=
ð!D=2Þ that was roughly A independent for A # 12, but
smaller for 3He and 4He. Measurements from Hall B at
JLab showed similar plateaus [27,28] in A=3He ratios for
Q2 # 1:4 GeV2. A previous JLab Hall C experiment at
4 GeV [11,29] measured scattering from nuclei and deu-
terium at larger Q2 values than SLAC or CLAS, but had
limited statistics for deuterium. While these measurements
provided significant evidence for the presence of SRCs,
precise A=D ratios for several nuclei, covering the desired
range in x and Q2, are limited.

Figure 2 shows the cross section ratios from E02-019 for
the "e ¼ 18% data. For x > 1:5, the data show the expected
plateau, although the point at x ¼ 1:95 is always high
because one is approaching the kinematic threshold for
scattering from the deuteron at x ¼ MD=Mp & 2. This
rise was not observed in previous measurements; the
SLAC data did not have sufficient statistics to see the
rise, while the CLAS measurements took ratios of heavy
nuclei to 3He, where the cross section does not go to zero
for x ! 2. Table I gives the ratio in the plateau region for a
range of nuclei at all Q2 values where there were sufficient
large-x data. We apply a cut in x to isolate the plateau
region, although the onset of scaling in x varies somewhat
withQ2. The start of the plateau is independent ofQ2 when
taken as a function of #2n,

#2n ¼ 2' $' qþ 2MN

2MN
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1'M2

N=W
2
2n

q
Þ; (3)

(W2
2n ¼ 4M2

N þ 4MN$'Q2) which corresponds to the
light-cone momentum fraction of the struck nucleon as-
suming that the photon is absorbed by a single nucleon
from a pair of nucleons with zero net momentum [26]. We
take the ratio for xmin < x< 1:9, such that xmin corre-
sponds to a fixed value of #2n.
There are small inelastic contributions at the higher Q2

values, even for x > 1:5. A simple convolution model [7]
predicts an inelastic contribution of 1%–3% at 18% and
5%–10% at 26%. This may explain the small systematicQ2

dependence in the extracted ratios seen in Table I. Further
results on the role of SRCs will be based on the 18% data,
with the inelastic contributions subtracted (including a
100% model dependence uncertainty), to minimize the
size and uncertainty of the inelastic correction.
Calculations of inclusive FSIs generally show them to

decrease rapidly with increasing Q2. However, the effects
can still be important at high Q2 for x > 1. While at least
one calculation suggests that the FSI is A dependent [30],
most indicate that the FSI contributions which do not
decrease rapidly with Q2 are limited to FSI between the
nucleons in the initial-state SRC [3,5,26,31–33]. In this
case, the FSI corrections are identical for 2N-SRCs in the
deuteron or heavy nuclei, and cancel when taking the
ratios. Our y-scaling analysis of the deuteron cross sections
(Fig. 1) suggests that the FSIs are relatively small for the
deuteron, and the ratios shown in Table I have only a small
Q2 dependence, consistent with the estimated inelastic
contributions, supporting the standard assumption that
any FSIs in the plateau region largely cancel in taking
the target ratios.
In the absence of large FSI effects, the cross section ratio

!A=!D yields the strength of the high-momentum tail of
the momentum distribution in nucleus A relative to a
deuteron. If the high-momentum contribution comes

 0
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 6 3He
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 3

 6
4He

(σ
A
/A

)/
(σ

D
/2

)

 0
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 0.8  1  1.2  1.4  1.6  1.8
x

9Be

12C

63Cu

 1  1.2  1.4  1.6  1.8  2
x

197Au

FIG. 2. Pernucleon cross section ratios vs x at "e ¼ 18%.

TABLE I. rðA;DÞ ¼ ð2=AÞ!A=!D in the 2N correlation re-
gion (xmin < x< 1:9). We take a conservative value of xmin ¼
1:5 at 18%, corresponding to #2n ¼ 1:275, and use this to set xmin

at 22% and 26%. The last column is the ratio at 18% after
subtracting the inelastic contribution as estimated by a simple
convolution model (and applying a 100% systematic uncertainty
on the correction).

A "e ¼ 18% "e ¼ 22% "e ¼ 26% Inel. sub.

3He 2:14) 0:04 2:28) 0:06 2:33) 0:10 2:13) 0:04
4He 3:66) 0:07 3:94) 0:09 3:89) 0:13 3:60) 0:10
Be 4:00) 0:08 4:21) 0:09 4:28) 0:14 3:91) 0:12
C 4:88) 0:10 5:28) 0:12 5:14) 0:17 4:75) 0:16
Cu 5:37) 0:11 5:79) 0:13 5:71) 0:19 5:21) 0:20
Au 5:34) 0:11 5:70) 0:14 5:76) 0:20 5:16) 0:22
hQ2i 2:7 GeV2 3:8 GeV2 4:8 GeV2

xmin 1.5 1.45 1.4

PRL 108, 092502 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 MARCH 2012

092502-3

• Universality of high-momentum component• Observed dominance of np-over-pp pairs 
for a variety of nuclei

• SRC pairs are in  spin-triplet state, a 
consequence of the tensor part of the 
nucleon-nucleon interaction 

• The cross section ratio: A/d, sensitive to 
nA(k)/nd(k)

• Observed scaling for x>1.5
nA(k > pF ) = a2(A)⇥ nd(k)

 Bottom Line

• Two-body Physics can not be neglected:

• ~20% of the nucleons in nuclei
• ~100% of the high k (>pF) nucleons

• Have large relative momentum and low center 
of mass momentum 

N. Fomin et al., PRL 108, 092502 (2012) 

Subedi et al., Science 320, 1476 (2008) 
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The basic model of nuclear theory

Lattice QCD  
QFT in a Finite and Discretized Spacetime

Lattice Spacing :

1/Λχa << 

m⇡L >> 2⇡
Lattice Volume : 

Extrapolate to a = 0 and L =1

(Nearly Continuum)

(Nearly Infinite Volume)

Systematically remove non-QCD parts of calculation
11

Effective Hamiltonians and consistent currents Accurate nuclear many-body methods

Quantum Chromodynamcs Nuclei and electroweak interactions

H| ni = En| ni
<latexit sha1_base64="6Y5G8EPAjGiXHANL/C4gVYTYXYU="></latexit><latexit sha1_base64="6Y5G8EPAjGiXHANL/C4gVYTYXYU="></latexit><latexit sha1_base64="6Y5G8EPAjGiXHANL/C4gVYTYXYU="></latexit><latexit sha1_base64="6Y5G8EPAjGiXHANL/C4gVYTYXYU="></latexit>

Jmn = h m|J | ni
<latexit sha1_base64="jrauiQ4lorweA8nDEod3LVus0Z4="></latexit><latexit sha1_base64="jrauiQ4lorweA8nDEod3LVus0Z4="></latexit><latexit sha1_base64="jrauiQ4lorweA8nDEod3LVus0Z4="></latexit><latexit sha1_base64="jrauiQ4lorweA8nDEod3LVus0Z4="></latexit>

lν
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The basic model of nuclear theory
Effective field theories are the link between QCD and nuclear observables. At low energy, the 
effective degrees of freedom are pions and nucleons:


H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

1-body 2-body 3-body
NN

NN

NN

NN

N

N

R. Machleidt , D. R. Entem, 
Phys.Rept.503:1-75,2011

E. Epelbaum, (Lectures), arXiv:1001.3229

Different strategies to construct two- and three-body interactions

✤   Chiral Effective Field Theory interactions

✤  Phenomenological potentials

31
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Nucleon-nucleon potential 
Origin of the N-N Repulsive Core

The Most Fundamental Problem in Nuclear Physics

!!!!!!

r

!"""#""$%&%

!!""#""'()"*)"+)",

!!!"#""-./01"2

(Taketani)

IIIIII
Long range part

one pion exchange potential
(OPEP)  H. Yukawa(1935)

I

II Medium range part

σ, ρ, ω exchange
2π exchange

III Short range part

repulsive core (RC)

quark ?

Bonn: Machleidt, Phys.Rev. C63(‘01)024001
Reid93: Stoks et al., Phys. Rev. C49(‘94)2950.
AV18:   Wiringa et al., Phys.Rev. C51(‘95) 38.

R. Jastrow(1951)Bonn PRC 63, 024001, 2001 
Reid93 PRC 49, 2950, 1994
AV18: Wiringa  PRC 51, 38, 1995

Long range part: One 𝝿 exchange

Range: 1

m⇡
⇠ 1.4 fm

Medium range part: Two 𝝿 exchange

Range: 
1

2m⇡
⇠ 0.7 fm

Short range part: Repulsive core

Aoki et al. Comput.Sci.Disc.1(2008)015009 
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Phenomenological potential: av18 + IL7

33

• Argonne v18 is a finite, local, configuration-space potential controlled by ~4300 np and pp 
scattering data below 350 MeV of the Nijmegen database

⇡
⇡

�

N N

N N

N N

N N

N N

N N

• Phenomenological three-nucleon interactions, like the Illinois 7, effectively include the lowest 
nucleon excitation, the ∆(1232) resonance, end other nuclear effects

�

⇡

⇡

NNN

N N N

⇡

⇡

NNN

N N N

vij =
18X

p=1

v
p(rij)O

p
ij

<latexit sha1_base64="tIC60JK9IPztfo1tygBZnfxg2Pc="></latexit><latexit sha1_base64="tIC60JK9IPztfo1tygBZnfxg2Pc="></latexit><latexit sha1_base64="tIC60JK9IPztfo1tygBZnfxg2Pc="></latexit><latexit sha1_base64="tIC60JK9IPztfo1tygBZnfxg2Pc="></latexit>

The parameters of the AV18 + IL7 are fit to properties of exactly solvable light nuclear systems. 

Phenomenological potentials explicitly include the long-range one-pion exchange interaction 
and a set of intermediate- and short-range phenomenological terms
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Chiral effective field theory

34

Chiral Hamiltonians exploits the (approximate) broken chiral symmetry of QCD

Le↵ = L(0) + L(1) + L(2)

Contact interactions lead to LEC:

Design an organizational scheme that can distinguish between more and less important terms: 

Identify the soft and hard scale of the problem L(n) ⇠
⇣ q

⇤b

⌘n

~ 1 GeV hard scale 

~ 100 MeV  soft scale 

27

+... +... +...

2N Force 3N Force 4N Force 5N Force

LO

(Q/⇤�)0

NLO

(Q/⇤�)2

NNLO

(Q/⇤�)3

N
3
LO

(Q/⇤�)4

NN 3N 4N

+ . . . + . . . + . . .

FIG. 5. Figure [342] courtesy of H. Hergert. Chiral two-, three-, and four-nucleon forces through
next-to-next-to-next-to-leading order (N3LO) in the chiral expansion. Dashed lines represent pion
exchanged between nucleons. The large solid circles, boxes and diamonds represent vertices that
are proportional to LECs of the theory (see text).

to the short-range two-nucleon interactions are typically fit to the deuteron and nucleon-
nucleon scattering data, and the analog ones related to the three-nucleon interaction are fit
to properties of light nuclei. In both cases, the LECs describing the long-range interactions
can be determined independently from pion-nucleon scattering [353–355], and thus, as a
prediction of chiral EFT, do not lead to new parameters that would need to be determined
in nuclear systems.

Many-body nuclear interactions have been over the years developed up to N5LO in the chi-
ral expansion [356–358]. Most many-body calculations are still at much lower order, however,
and often at lower cuto↵ scales ⇤. A variety of quantum many-body approaches [246, 359–
363] are used for these calculations, including coupled cluster (CC), the no-core shell model
(NCSM), and Variational and Green’s function Monte Carlo (VMC and GFMC) and Auxil-
iary Field Di↵usion Monte Carlo (AFDMC). Each of these approaches has di↵erent strengths
and weaknesses depending upon the system size and the momentum cuto↵ of the interaction.

The community is vigorously exploring the importance of including�’s as explicit degrees

Short range two-nucleon interaction  
fit to deuteron and NN scattering

Three nucleon interactions fitted on 
light nuclei

Long-range LEC are determined from 
π-nucleon scattering

Formulate statistical models for uncertainties: Bayesian estimates of EFT errors
S. Wesolowski, et al, PRC 104, 064001 (2021)

H. Hergert, Front. in Phys. 8, 379 (2020)
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The basic model of nuclear theory

35

 The Hamiltonian structure implies that the current operator includes one and two-body contributions

Jµ(q) =
X

i

jµi +
X

i<j

jµij + . . .
NN

NN

+

NN

NN

The current operator describes how the external probe interacts with nucleon, nucleons pairs, create 
new particles …

The structure of the current operator is constrained by the Hamiltonian through the continuity equation

r · JEM + i[H, J
0
EM] = 0

❖  Chiral Effective Field Theory Electroweak many-body currents 

❖  “Phenomenological” Electroweak many-body currents 
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Variational Monte Carlo

36

In variational Monte Carlo, one assumes a suitable form for the trial wave function

The best parameters are found by optimizing the variational energy 

| T i = F|�i
: Mean field component; slater determinant of single-particle orbitals�

F : correlations (2b & 3b) induced by H

h T |H| T i
h T | T i

= ET � E0

��������������������

� ��� � ��� �

ԥ(J2o)

ԡφϵ (7K)

ԥվ	ԡφϵ


��������������
���

� ��� � ��� �

ԕ(J2o)

ԡφϵ (7K)

ԕվ	ԡφϵ


The correlation operator reflects the spin-isospin dependence of the nuclear interaction

F ⌘
⇣
S
Y

i<j

Fij

⌘
Fij ⌘

X

p

f
p
ijO

p
ij
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Green’s Function Monte Carlo

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X

n

cn e
�(En�E0)⌧ | ni = c0| 0i

GFMC overcomes the limitations of the variational wave-function by using an imaginary-time  
projection technique to projects out the exact lowest-energy state

Any trial wave function can be expanded in the complete set of eigenstates of the the Hamiltonian 
according to

| T i =
X

n

cn| ni H| ni = En| ni

The direct calculation of the imaginary-time propagator for strongly-interacting systems involves 
prohibitive difficulties

The imaginary-time evolution is broken into N small imaginary-time steps, and complete sets of 
states are inserted

<latexit sha1_base64="uP72hXQF7P3TVdK5Z9IwaH7oxaE="></latexit>

e�(H�E0)⌧ | V i =
Z

dR1 . . . dRN |RN ihRN |e�(H�E0)�⌧ |RN�1i . . . hR2|e�(H�E0)�⌧ |R1i V (R1)

Short Time Propagator

J. Carlson , et al. Rev. Mod. Phys. 87 (2015) 1067 
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Green’s Function Monte Carlo

B. Pudliner et al., PRC 56, 1720 (1997)
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The computational cost of the calculation is 
2A x A!/(Z!(A-Z)!) 

lim
⌧!1

e�(H�E0)⌧ | T i = lim
⌧!1

X

n

cn e
�(En�E0)⌧ | ni = c0| 0i

GFMC overcomes the limitations of the variational wave-function by using an imaginary-time  
projection technique to projects out the exact lowest-energy state

Any trial wave function can be expanded in the complete set of eigenstates of the the Hamiltonian 
according to

| T i =
X

n

cn| ni H| ni = En| ni
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Solve the Many Body Nuclear problem

39

Develop Computational Methods to solve numerically 


H (R; s1 . . . sA, ⌧1 . . . ⌧A) = E (R; s1 . . . sA, ⌧1 . . . ⌧A)

FIG. 3. Spectra of A=4–12 nuclei. The energy spectra obtained with the NV2+3-Ia chi-

ral interactions are compared to experimental data. Also shown are results obtained with the

phenomenological AV18+IL7 interactions.

6 Stoks, V.G.J., Klomp, R.A.M., Rentmeester, M.C.M. & de Swart, J.J. Partial-wave analysis of

all nucleon-nucleon scattering data below 350 MeV. Phys. Rev. C 48, 792 (1993).

7 Friar, J.L., Gibson, B.F. & Payne, G.L. Recent Progress in Understanding Trinucleon Proper-

ties. Annu. Rev. Nucl. Part. Sci. 34, 403 (1984).

8 Pudliner, B.S., Pandharipande, V.R., Carlson, J., Pieper, S.C. &Wiringa, R.B. QuantumMonte

Carlo calculations of nuclei with A  7. Phys. Rev. C 56, 1720 (1997).

9 Navrátil, P., Vary, J.P. & Barrett, B.R. Large-basis ab initio no-core shell model and its appli-

cation to 12C. Phys. Rev. C 62, 054311 (2000).

10 Pieper, S.C., Pandharipande, V.R., Wiringa, R.B. & Carlson, J. Realistic models of pion-

exchange three-nucleon interactions. Phys. Rev. C 64, 014001 (2001).

18

M. Piarulli, et al. Phys.Rev.Lett. 120 (2018) 5, 052503

Quantum Monte Carlo techniques are suitable to solve the Schroedinger equation of medium nuclei
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Probing the target structure 

40

The interaction depends on the mediator energy 
( dubbed as energy transfer ω)


Probing the target structure 
The interaction depends on the mediator energy (the energy transfer - ω)

At λ >> r  

Scattering from a point like spin-less  particle.  

At low energies λ ~r 

Scattering from a charged object - various 
possible interactions   

At high energies λ < r 

Scattering from target constituents - various 
possible interactions  

Halzen & Martin

27

Higher energy transfer = smaller de Broglie 
wavelength = the probe can resolve the structure 
inside the nucleon
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Lepton-nucleus cross section

41

d�

d⌦dE0

Energy transfer !!e ⇠
q2

2m

QE

MEC

RES
DIS

Different reaction mechanisms 
contributing to lepton-nucleus cross 
section

 —fixed value of the beam energy 
(monochromatic)

In neutrino experiments these 
contributions are not nicely 
separated

QE MEC

p

p
n

RES

p
π

DIS

π
p

n

Δ

ν ν ν ν

µ µ µ µ

Coherent
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Ab initio Methods

42

 Ab-initio methods (CC, IMSRG, SCGF, QMC, 
etc) are systematically improvable many-body 
approaches.

Energy transfer !!e ⇠
q2

2m

QE

Meson Exchange

d�

Accurate predictions for ground state 
properties of nuclei + response functions in 
the low/moderate energy region

A. Ekström et al, Front. Phys.11 (2023) 29094
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Integral transform techniques
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 Using the completeness relation for the final states, we are left with a ground-state expectation value

Nuclear response function involves evaluating a number of transition amplitudes. 


R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0)

E↵�(�,q) =

Z
d!K(�,!)R↵�(!,q) = h 0|J†

↵(q)K(�, H � E0)J�(q)| 0i

K

Valuable information can be obtained from the integral transform of the response function defined as

43

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov

Green’s Function Monte Carlo

44

R↵�(!,q)

�������������������������

� �� ��� ��� ��� ��� ��� ��� ���
ԇ ᆿᇀ(J

2o
φ )

ᆂ (J2o)

_2bTQMb2

E↵�(⌧,q)

yXy

RXy

kXy

jXy

9Xy

8Xy

eXy

� ���� ���� ���� ���� ����

Ӻ ᆿᇀ

ᅽ (J2oφ)

1m+HB/2�M `2bTQMb2

Inverting the integral transform is a complicated problem 
Bayesian techniques, in particular Maximum Entropy is used


A. Lovato et al, PRL117 (2016), 082501, 
PRC97 (2018), 022502 

NR, Frontiers in Phys. 8 (2020) 116 

• The Laplace integral transform: K(�,!) = e�!�

Eαβ(σ, q) = ∫ dωe−ωσR(ω, q)• Euclidean Response Function:
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Green’s Function Monte Carlo

45

Inclusive results which are virtually correct in the QE 
Relies on non-relativistic treatment of the kinematics

Medium mass nuclei A < 13

Can not handle explicit pion degrees of freedom

Limitations:

INCLUSIVE ELECTRON SCATTERING

3
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FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Since pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

of R↵(q,!)—so called Euclidean response [11]—which we
define as

E↵(q, ⌧) =

Z 1

!
+
el

d! e�!⌧
R↵(q,!)

[Gp

E
(q,!)]2

, (2)

where Gp

E
(q,!) is the (free) proton electric form factor

and the integration excludes the contribution due to elas-
tic scattering (!el is the energy of the recoiling ground
state). We elaborate this issue further below; for now
it su�ces to note that, in the specific case of 12C, the
ground state has quantum numbers J⇡ =0+ and there-
fore the elastic contribution vanishes in the transverse
channel. With the definition given in Eq. (2), the Eu-
clidean response function above can be thought of as be-
ing due to point-like, but strongly interacting, nucleons,
and can simply be expressed as

E↵(q, ⌧)=h0|O†
↵
(q)e�(H�E0)⌧O↵(q)|0i� |F↵(q)|2e�⌧!el ,

(3)
where H is the nuclear Hamiltonian (here, the AV18/IL7
model), F↵(q) = h0|O↵(q)|0i is the elastic form fac-
tor, and in the electromagnetic operators O↵(q) the de-

pendence on the energy transfer ! has been removed
by dividing the current j↵(q,!) by Gp

E
(q,!) [15]. The

calculation of this matrix element is then carried out
with GFMC methods [11] similar to those used in pro-
jecting out the exact ground state of H from a trial
state [28]. It proceeds in two steps. First, an un-
constrained imaginary-time propagation of the state |0i
is performed and saved. Next, the states O↵(q)|0i
are evolved in imaginary time following the path pre-
viously saved. During this latter imaginary-time evolu-
tion, scalar products of exp [�(H�E0) ⌧i]O↵(q)|0i with
O↵(q)|0i are evaluated on a grid of ⌧i values, and from
these scalar products estimates for E↵(q, ⌧i) are obtained
(a complete discussion of the methods is in Refs. [11, 29]).
Following Ref. [15] (see also extended material submit-

ted in support of that publication), we have exploited
maximum entropy techniques [13, 14] to perform the an-
alytic continuation of the Euclidean response function—
corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inver-
sion procedure described in [15] in order to better prop-
agate the statistical errors associated with E↵(q, ⌧) into
R↵(q,!). Specifically, the smallest possible value for pa-
rameter ↵ (see Ref. [15]) has been chosen to perform a
first inversion of the Laplace transform, which is then in-
dependent on the prior. The resulting response function
R(0) is the one whose Laplace transform E(0) is the clos-
est to the original average GFMC Euclidean response.
Then, N = 100 Euclidean response functions are sam-
pled from a multivariate gaussian distribution, with mean
value E(0) and covariance estimated from the original set
of GFMC Euclidean responses. The corresponding re-
sponse functions, obtained using the so called “historic
maximum entropy” technique, are used to estimate the
mean value and the variance of the final inverted response
function.

q (MeV/c) 2+ 0+ 4+

300 0.1286 0.0311 0.0060
380 0.0745 0.0051 0.0075
570 0.0064 0.0046 0.0037

TABLE I. Measured longitudinal transition form factors, de-
fined as hf |OL(q)|0i/Z, to the f =2+, 0+ (Hoyle), and 4+
states in 12C. Experimental data are from Refs. [30–32], and
have been divided by the proton electric form factorGp

E(q,!f )
with !f = Ef � E0.

We now proceed to address the issue alluded to earlier.
The low-lying spectrum of 12C consists of J⇡ =2+, 0+

(Hoyle), and 4+ states with excitation energies E?

f
� E0

experimentally known to be, respectively, 4.44, 7.65, and
14.08 in MeV units [33]. The contributions of these states
to the quasi-elastic longitudinal and transverse response
functions extracted from inclusive (e, e0) cross section
measurements are not included. Therefore, before com-

2

to self-consistently account for nucleon and nuclear struc-
ture [24, 25], leads to a reduction of the proton elec-
tric form factor, and, as a consequence, to a significant
quenching of the longitudinal response function of nu-
clear matter and associated Coulomb sum rule [18]. Such
a model does not explain the large enhancement of the
transverse response or the momentum-transfer depen-
dence in the quenching of the longitudinal one. It should
also be noted that medium modifications are not an in-
evitable consequence of the quark substructure of the nu-
cleon. For example, a study of the two-nucleon problem
in a flux-tube model of six quarks interacting via single
gluon and pion exchanges [26] indicates that the nucle-
ons retain their individual identities down to very short
separations, with little distortion of their substructures.

Figures 1–2, showing a comparison between the exper-
imental and theoretical RL(q,!) and RT (q,!) for mo-
mentum transfer values in the range 300–570 MeV/c,
immediately lead to the main conclusions of the present
work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
(ii) in the quasi-elastic peak.

As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
only di↵er in the sign of this vector-axial interference re-
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

 Two-body currents generate additional strength in over the whole quasi-elastic region

 Correlations redistribute strength from the quasi-elastic peak to high-energy transfer regions 
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work: (i) the dynamical approach outlined above (with
free nucleon electromagnetic form factors) is in excellent
agreement with experiment in both the longitudinal and
transverse channels; (ii) as illustrated by the di↵erence
between the plane-wave-impulse-approximation (PWIA)
and GFMC one-body-current predictions (curves labeled
PWIA and GFMC-O1b), correlations and interaction ef-
fects in the final states redistribute strength from the
quasi-elastic peak to the threshold and high-energy trans-
fer regions; and (iii) while the contributions from two-
body charge operators tend to slightly reduce RL(q,!)
in the threshold region, those from two-body currents
generate a large excess of strength in RT (q,!) over
the whole !-spectrum (curves labeled GFMC-O1b and
GFMC-O1b+2b), thus o↵setting the quenching noted in
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As a result of the present study, a consistent picture
of the electromagnetic response of nuclei emerges, which
is at variance with the conventional one of quasi-elastic
scattering as being dominated by single-nucleon knock-
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced
by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [27] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
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FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

sponse, and that this di↵erence is crucial for inferring the
charge-conjugation and parity violating phase, one of the
fundamental parameters of neutrino physics, to be mea-
sured at DUNE. The rest of this paper deals succinctly
with the most salient aspects of the present calculations.

The longitudinal and transverse response functions are
defined as

R↵(q,!) =
X

f

hf |j↵(q,!)|0ihf |j↵(q,!)|0i⇤

⇥ �(Ef � ! � E0) , ↵ = L, T (1)

where |0i and |fi represent the nuclear initial and final
states of energies E0 and Ef , and jL(q,!) and jT (q,!)
are the electromagnetic charge and current operators, re-
spectively. A direct calculation of R↵(q,!) is impractical,
since it would require evaluating each individual transi-
tion amplitude |0i �! |fi induced by the charge and cur-
rent operators. To circumvent this di�culty, the use of
integral transform techniques has proven to be quite help-
ful. One such approach is based on the Laplace transform

12C, q=570 MeV

AL et al. PRL 117 082501 (2016)

16

Alessandro Lovato et al. PRL 117 082501 (2016)  

NR, Frontiers in Phys. 8 (2020) 116 

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov

Why relativity is important

46

R↵�(!,q) =
X

f

h0|J†
↵(q)|fihf |J�(q)|0i�(! � Ef + E0) Kinematics

Currents

j0�,S =
GS

E

2
p
1 +Q2/4m2

N

� i
2GS

M �GS
E

8m2
N

q · (��� ⇥ p)

jµ�,S = ū(p0)
hGS

E + ⌧GS
M

2(1 + ⌧)
�µ + i

�µ⌫q⌫
4mN

GS
M �GS

E

1 + ⌧

i
u(p)

Covariant expression of the e.m. current:

Nonrelativistic expansion in powers of p/mN

Energy transfer at the quasi-elastic peak:

wQE =
q
q2 +m2

N �mN wnr
QE = q2/(2mN )
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q
Pi=0 

(Pf=q)

Active Nucleon Breit frame 

qfr

Pfri=-A/2qfr 
Pf=-A/2 qfr+qfr

LAB-frame 

• In a generic reference frame the longitudinal non relativistic response reads

Rfr
L =

X

f

���h i|
X

j

⇢j(q
fr,!fr)| f i

���
2
�(Efr

f � Efr
i � !fr)

�(Efr
f � Efr

i � !fr) ⇡ �[efrf + (P fr
f )2/(2MT )� efri � (P fr

i )2/(2MT )� !fr] ⌘ �[efrf � enrf (qfr,!fr)]

• The response in the LAB frame is given by the Lorentz transformation 

 where 

RL(q,!) =
q2

(qfr)2
Efr

i

M0
Rfr

L (qfr,!fr) RT (q,!) =
Efr

i

M0
Rfr

T (qfr,!fr)

qfr = �(q � �!), !fr = �(! � �q), P fr
i = ���M0, Efr

i = �M0
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q
Pi=0 

(Pf=q)

Active Nucleon Breit frame 

qfr

Pfri=-A/2qfr 
Pf=-A/2 qfr+qfr

LAB-frame 

• Same position of the quasielastic peak

!QE = !nr
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FIG. 2. Energy transfer dependence of the transverse re-
sponse in the LAB (solid) and ANB (dashed) frames with the
two-fragment model for di↵erent values of q. The left (right)
panel shows the responses as a function of the nonrelativistic
(relativistic) scaling variables.

field.
The results obtained in the ANB (with or without the

two fragment model), incorporate relativistic corrections
to the kinematics. This is shown explicitly in Fig. 2,
where we compare the energy-dependence of the response
in the LAB and ANB frames, for di↵erent values of q as a
function of the relativistic (left panel) and nonrelativistic
(right panel) scaling variable [29, 30], which is defined as

 nr(!, q) =
m

|q|kF

✓
! � q2

2m
� ✏nr

◆
(23)

where the Fermi momentum for 12C is taken to be
kF = 225 MeV, and the energy shift ✏nr ⇠ 40 MeV is
included to center the peaks at  nr = 0. It is clear that
the LAB results, corresponding to the solid lines, exhibit
a universal energy-dependence in terms of  nr for the
three di↵erent values of momentum transfer: q = 500,
700, and 900 MeV. On the other hand, the peaks of the
responses obtained using the two-fragment model (or the
ANB) are shifted to smaller  nr, while the high- nr tail
shrinks more rapidly, as q increases. The same responses
are shown in the right-hand panel, as function of the rel-
ativistic scaling variable [29, 31]

 (!, q) =
1

⇠F

�0 � ⌧
h
⌧(1 + �0) + 

p
⌧(⌧ + 1)

i1/2 , (24)

with the dimensionless variables defined as

�0 =
! � ✏r
2MN

,  =
|q|

2MN
, ⌧ =

Q2

4M2
N

(25)

⇠F =

s

1 +

✓
kF
MN

◆2

� 1. (26)

In the definition of  we set ✏r ⇠ 30 MeV so as to aligh
the peak of the ANB responses at approximately  =
0. Comparing the di↵erent dashed lines, it emerges that

the ANB results are aligned when plotted as a function
of the relativistic scaling variable, thus confirming that
relativistic e↵ects are properly accounted for in the ANB
frame. On the other hand, the nonrelativistic responses
evaluated in the LAB frame manifestly violate relativistic
scaling.
For benchmark purposes, we consider alternative

schemes that have been develop to account for relativistic
e↵ects in nonrelativistic calculations. In Refs. [33], rela-
tivistic corrections for nucleon knockout in a nonrelativis-
tic shell model are implemented by shifting the outgoing
nucleon energy when solving the Shrödinger equation as

TN ! T 0
N = TN

✓
1 +

TN

2m

◆
. (27)

Since the the nonrelativistic kinetic energy is p2 = 2mT 0
N ,

the above shift corresponds to using the relativistic mo-
mentum p2 = TN (2m + TN ), thereby e↵ectively trans-
forming the nonrelativistic Shrödinger equation into a
form similar to a radial Dirac equation for the upper
components of the spinors [34]. The latter indeed uses
as “energy” p2/(2m), p being the relativistic momentum.
The e↵ect of this substitution in a CRPA calculation of
the transverse response [35, 36] is shown in Fig. 3. Note
that in Ref. [37], the CRPA results additionally includes
the leading order correction to the electroweak currents of
Ref. [38]. In this figure, we compare the e↵ect of shifting
the kinetic energy of the nucleon as in Eq. (27) with com-
puting the response in the ANB fram and then boosting it
back to the LAB frame. It is clear that both approaches
lead to very similar ! dependence of the corrected re-
sponses. Note that the shift of Eq. (27) cannot be readily
implemented to correct the GFMC responses. However,
comparing with Eq. (22), the shift of Eq. (27) resembles
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T
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FIG. 3. CC vector transverse response functions at q =
700 MeV. The red and purple curves display the GFMC and
CRPA results. The solid lines show the fully nonrelativistic
calculations while the dashed ones have been obtained com-
puting the response in the ANB frame. The dotted lines im-
plement the shift of outgoing nucleon energies (see Eq. (27)).

• LAB (solid) and ANB (dashed) predictions 

pfri ≃-qfr/2 

pfrf≃ qfr/2

• ANB @ the single nucleon level:
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• Relativistic effects are much smaller in the ANB frame where the final nucleon momentum 
is ∝q/2, the position of the peak remains almost unchanged
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Electron scattering results including relativistic corrections for some kinematics covered by the 
calculated responses

A.Lovato, A.Nikolakopoulos, NR, N. Steinberg, Universe 9 (2023) 8, 36
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4

ted) N -to-� axial coupling constant mentioned earlier.
Values for the parameters entering these axial form fac-
tors are specified in Ref. [41].

B. Electroweak response functions

The calculation of the response functions in Eq. (3)
proceeds in two steps. The first consists in Laplace-
transforming R↵�(q,!) with respect to !, which reduces
to the following current-current correlator (Euclidean re-
sponse function)

E↵�(q, ⌧) = hi|j�†CC(q,!qe) e
�⌧(H�Ei)j

↵

CC(q,!qe)|ii , (4)

where H is the Hamiltonian (here the AV18-IL7 model).
The energy dependence of j

↵

CC
(q,!) comes in via the

nucleon and N -to-� transition form factors, which are
taken as functions of Q

2, as noted above. We freeze
the !-dependence by fixing Q

2 at the value Q
2
qe = q

2 �
!
2
qe with the quasielastic energy transfer !qe given by

!qe =
p

q2 +m2 � m (m is the nucleon mass). This is
needed in order to exploit the completeness over the nu-
clear final states in evaluating the Laplace transforms of
R↵�(q,!). The correlator is then computed with Green’s
function Monte Carlo (GFMC) methods [44, 45, 60–63].
It should be stressed that no additional approximations
are made beyond those inherent to the modeling of the in-
teractions and currents. The response is thus calculated
ab initio by treating completely correlations in the initial
state, by accounting consistently through the imaginary-
time propagation for interaction e↵ects in the final states,
and, in particular, by retaining in full the important in-
terference between one- and two-nucleon currents.

Because of the computational cost of the present study
(of the order of 130 million core hours on the mas-
sively parallel computer MIRA at ANL), however, we
only propagate the Z�1

A system, i.e., j↵CC in Eq. (4) is
the charge lowering current corresponding to the pro-
cess (⌫`, `+). If electromagnetic interactions and isospin-
symmetry-breaking terms in the strong interactions were
to be ignored, the final states |f ; Z+1

Ai and |f ; Z�1
Ai

of the Z+1
A and Z�1

A nuclear systems would simply be
related to each other via |f ; Z+1

Ai=(
Q

i
⌧i,x) |f ; Z�1

Ai,
where ⌧i,x is the isospin flip operator converting proton
i into a neutron or viceversa. Matrix elements of the
charge-raising and charge-lowering current between the
Z
A state and, respectively, the Z+1

A and Z�1
A states

would then be identical. We will assume here this is the
case for 12C, and obtain the response functions corre-
sponding to the (⌫`, `�) process from those corresponding
to the (⌫`, `+) process by correcting the final state ener-
gies of the 12B system by the di↵erence in ground-state
energies between 12N and 12B—in practice, by shifting
the response functions by about 5.5 MeV. We expect this
approximation to be inaccurate in the threshold region;
however, in quasielastic kinematics and beyond, it should
be of little import.
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FIG. 1. GFMC response functions at q=300 (red), 500
(blue), and 700 (green) MeV. Predictions obtained with
one-body (one- and two-body) currents are shown by dash
(solid) lines. Shaded areas result from a combination of
GFMC statistical errors and uncertainties associated with the
maximum-entropy inversion.
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A state and, respectively, the Z+1
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would then be identical. We will assume here this is the
case for 12C, and obtain the response functions corre-
sponding to the (⌫`, `�) process from those corresponding
to the (⌫`, `+) process by correcting the final state ener-
gies of the 12B system by the di↵erence in ground-state
energies between 12N and 12B—in practice, by shifting
the response functions by about 5.5 MeV. We expect this
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FIG. 1. GFMC response functions at q=300 (red), 500
(blue), and 700 (green) MeV. Predictions obtained with
one-body (one- and two-body) currents are shown by dash
(solid) lines. Shaded areas result from a combination of
GFMC statistical errors and uncertainties associated with the
maximum-entropy inversion.
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ted) N -to-� axial coupling constant mentioned earlier.
Values for the parameters entering these axial form fac-
tors are specified in Ref. [41].

B. Electroweak response functions

The calculation of the response functions in Eq. (3)
proceeds in two steps. The first consists in Laplace-
transforming R↵�(q,!) with respect to !, which reduces
to the following current-current correlator (Euclidean re-
sponse function)

E↵�(q, ⌧) = hi|j�†CC(q,!qe) e
�⌧(H�Ei)j

↵

CC(q,!qe)|ii , (4)

where H is the Hamiltonian (here the AV18-IL7 model).
The energy dependence of j

↵

CC
(q,!) comes in via the

nucleon and N -to-� transition form factors, which are
taken as functions of Q

2, as noted above. We freeze
the !-dependence by fixing Q

2 at the value Q
2
qe = q

2 �
!
2
qe with the quasielastic energy transfer !qe given by

!qe =
p

q2 +m2 � m (m is the nucleon mass). This is
needed in order to exploit the completeness over the nu-
clear final states in evaluating the Laplace transforms of
R↵�(q,!). The correlator is then computed with Green’s
function Monte Carlo (GFMC) methods [44, 45, 60–63].
It should be stressed that no additional approximations
are made beyond those inherent to the modeling of the in-
teractions and currents. The response is thus calculated
ab initio by treating completely correlations in the initial
state, by accounting consistently through the imaginary-
time propagation for interaction e↵ects in the final states,
and, in particular, by retaining in full the important in-
terference between one- and two-nucleon currents.

Because of the computational cost of the present study
(of the order of 130 million core hours on the mas-
sively parallel computer MIRA at ANL), however, we
only propagate the Z�1

A system, i.e., j↵CC in Eq. (4) is
the charge lowering current corresponding to the pro-
cess (⌫`, `+). If electromagnetic interactions and isospin-
symmetry-breaking terms in the strong interactions were
to be ignored, the final states |f ; Z+1

Ai and |f ; Z�1
Ai

of the Z+1
A and Z�1

A nuclear systems would simply be
related to each other via |f ; Z+1

Ai=(
Q

i
⌧i,x) |f ; Z�1

Ai,
where ⌧i,x is the isospin flip operator converting proton
i into a neutron or viceversa. Matrix elements of the
charge-raising and charge-lowering current between the
Z
A state and, respectively, the Z+1

A and Z�1
A states

would then be identical. We will assume here this is the
case for 12C, and obtain the response functions corre-
sponding to the (⌫`, `�) process from those corresponding
to the (⌫`, `+) process by correcting the final state ener-
gies of the 12B system by the di↵erence in ground-state
energies between 12N and 12B—in practice, by shifting
the response functions by about 5.5 MeV. We expect this
approximation to be inaccurate in the threshold region;
however, in quasielastic kinematics and beyond, it should
be of little import.
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FIG. 1. GFMC response functions at q=300 (red), 500
(blue), and 700 (green) MeV. Predictions obtained with
one-body (one- and two-body) currents are shown by dash
(solid) lines. Shaded areas result from a combination of
GFMC statistical errors and uncertainties associated with the
maximum-entropy inversion.

• Electroweak response functions for a 
fixed value of q, as a function of ω

• Tables of these response functions can 
be provided for different values of q and 
used to obtain cross sections

12C
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III. RESULTS

Muon neutrino and antineutrino flux-averaged cross
sections are obtained from

⌧
d�

dTµ d cos ✓µ

�
=

Z
dE⌫ �(E⌫)

d�(E⌫)

dTµ d cos ✓µ
, (9)

where �(E⌫) is the normalized ⌫µ or ⌫µ flux—those
for MiniBooNE and T2K are shown in Fig. 3—and
d�(E⌫)/(dTµ d cos ✓µ) are the corresponding inclusive
cross sections of Eq. (2). The experimental data are
binned in cos ✓µ bins of constant width (0.1) for Mini-
BooNE, and varying widths for T2K; when comparing
to these data, the calculated cross sections are averaged
over the relevant cos ✓µ bin.
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yX8

RXy

RX8

kXy

yXy yX8 RXy RX8 kXy kX8 jXy

ᅿ	Ӻ ᇌ
(
:

2o
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hkE ᅸ

FIG. 3. Normalized ⌫µ fluxes of MiniBooNE and T2K, and
normalized ⌫µ flux of MiniBooNE.

Predictions for the flux-averaged cross sections on 12C
corresponding to the two experiments and obtained by
including one-body only, and one- and two-body, cur-
rents are shown by, respectively, dashed (green) and
solid (blue) lines in Figs. 4–6. The shaded areas re-
sult from combining statistical errors associated with the
GFMC evaluation of the Euclidean response functions,
uncertainties in the maximum-entropy inversion of them,
and uncertainties due to extrapolation of the response
functions outside the calculated (q,!) range, which is
100 MeV  q  700 MeV and ! from threshold to ! . q.
This extrapolation is carried out by exploiting the scaling
property of the various response functions, as outlined at
the end of the previous section. The large cancellation
between the dominant terms proportional to vxx Rxx and
vxy Rxy in antineutrino cross sections leads to somewhat
broader error bands than for the neutrino cross sections,
for which those terms add up. Furthermore, we note
that the cross-section scales in Figs. 4 and 5 are di↵er-
ent, those for the ⌫µ-CCQE data being a factor of about
2 to 10 smaller than for the ⌫-CCQE data as the muon
scattering angle increases from 0� to 90�.

Overall, the MiniBooNE ⌫µ and ⌫µ, and T2K ⌫µ, data
are in good agreement with theory, when including the

contributions of two-body currents. This is especially no-
ticeable in the case of the MiniBooNE ⌫µ data at forward
scattering angles. However, the calculated cross sections
underestimate somewhat the MiniBooNE ⌫µ data at pro-
gressively larger muon kinetic energy Tµ and backward
scattering angles ✓µ, and the ⌫µ data at forward ✓µ over
the whole Tµ range. By contrast, the full theory (with
one- and two-body currents) appears to provide a good
description of the T2K ⌫µ data over the whole measured
region.
For a given initial neutrino energy E⌫ , the calculated

cross section is largest at the muon energy Tµ correspond-
ing to that of the quasielastic peak,

T
qe
µ

+mµ ⇡ E⌫

1 + 2 (E⌫/m) sin2 ✓µ/2
, (10)

wherem is nucleon mass, and on the r.h.s. of the equation
above we have neglected the muon mass. The position
of the quasielastic peak then moves to the left, towards
lower and lower T

qe
µ
, as ✓µ changes from the forward to

the backward hemisphere. The general trend expected on
the basis of this simple picture is reflected in the calcula-
tion and data, even though the cross sections in Figs. 4-6
result from a folding with the neutrino flux, which is far
from being monochromatic. Nevertheless, the correlation
between peak location in the flux-averaged cross sections
and ✓µ remains. For example, the T2K flux is largest
at E⌫ ⇡ 560 MeV and fairly narrow; hence, one would
expect the T2K flux-averaged cross section be peaked at
the muon momentum p

qe
µ

⇡ 550 MeV for cos ✓µ =1, and
p
qe
µ

⇡ 450 MeV for cos ✓µ =0.65, in reasonable accord
with the data of Fig. 6.
In Figs. 4 and 5 we also present the flux-folded ⌫µ

and ⌫µ cross sections obtained in plane-wave-impulse-
approximation (PWIA) for three di↵erent bins in cos ✓µ
(corresponding to the forward, intermediate, and back-
ward region) of the MiniBooNE data. We have adopted
here the most naive (non-relativistic) formulation of
PWIA based on the single-nucleon momentum distri-
bution rather than the spectral function.3 Hence, the
PWIA response functions follow from

R
PWIA
↵�

(q,!)=

Z
dpN(p)x↵�(p,q,!)

⇥ �

 
! � E � |p+ q|2

2m
� p

2

2mA�1

!
, (11)

where the factors x↵�(p,q,!) denote appropriate combi-
nations of the CC components (the same single-nucleon
CC utilized in the GFMC calculations), and N(p) is the
nucleon momentum distribution in 12C (as calculated in
Ref. [69]). The e↵ects of nuclear interactions are sub-
sumed in the single parameter E, which can be inter-
preted as an average separation energy (we take the value

3 It should be noted here that ab initio calculations of the 12C
spectral functions are not currently available.

First microscopic calculation of 
neutrino-nucleus cross section

⌧
d�

dTµ d cos ✓µ

�
=

Z
dE⌫ �(E⌫)

d�(E⌫)

dTµ d cos ✓µ
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA =1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q,ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.
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FIG. 4. MiniBooNE flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed
as a function of the muon kinetic energy (Tµ) for different ranges of cos θµ. The experimental data and their shape uncertainties
are from Ref. [46]. The additional 10.7% normalization uncertainty is not shown here. Calculated cross sections are obtained
with ΛA =1.0 GeV.

E ≈ 20 MeV). The remaining terms in the δ-function
are the final energies of the struck nucleon and recoiling
(A–1) system of mass mA−1. From these RPWIA

αβ we ob-
tain the corresponding flux-folded cross sections shown
in Figs. 4 and 5 by the short-dashed (black) line labeled
PWIA. Also shown in this figure by the dot-dashed (pur-
ple) line (labeled PWIA-R) are PWIA cross sections ob-
tained by first fixing the nucleon electroweak form factor
entering xαβ(p,q,ω) at Q2

qe, and then rescaling the vari-
ous response functions by ratios of these form factors, as
indicated in Sec. II B.

A couple of comments are in order. First, the cross
sections in PWIA are to be compared to those obtained
with the GFMC method by including only one-body cur-
rents (curves labeled GFMC 1b): they are found to be
systematically larger than the GFMC predictions, par-
ticularly at forward angles. Furthermore, it appears that
the (spurious) excess strength in the PWIA cross sections
(in the same forward-angle kinematics) matches the in-

crease produced by two-body currents in the GFMC cal-
culations (difference between the GFMC 1b and GFMC
12b curves). This should be viewed as accidental.

Second, the PWIA and PWIA-R cross sections are
very close to each other, except in the ν case at back-
ward angles. In this kinematical regime there are large
cancelations between the dominant terms proportional
to the transverse and interference response functions; in-
deed, as θµ changes from 0◦ to about 90◦, the ν cross
section drops by an order of magnitude. As already
noted, these cancellations are also observed in the com-
plete (GFMC 12b) calculation, and lead to the rather
broad uncertainty bands in Fig. 5. Aside from this qual-
ification, however, the closeness between the PWIA and
PWIA-R results provides corroboration for the validity
of the rescaling procedure of the electroweak form fac-
tors, needed to carry out the GFMC computation of the
Euclidean response functions.
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FIG. 6. T2K flux-folded double differential cross sections per target neutron for νµ-CCQE scattering on 12C, displayed as a
function of the muon momentum pµ for different ranges of cos θµ. The experimental data and their shape uncertainties are
from Ref. [48]. Calculated cross sections are obtained with ΛA =1.0 GeV.

vector form factors in agreement with experimental data
which are of course quite accurate. These calculations
suggest a larger value of ΛA may be appropriate. We
investigate the implications of this finding by presenting
in Fig. 7 the flux-folded cross sections (for MiniBooNE
and selected bins in cos θµ), obtained by replacing in the
dipole parametrization the cutoff ΛA ≈ 1 GeV with the
value Λ̃A ≈ 1.15 GeV. As expected, this leads generally
to an increase of the GFMC predictions over the whole
kinematical range. Since the dominant terms in the cross
section proportional to the transverse and interference re-
sponse functions tend to cancel for νµ, the magnitude of
the increase turns out to be more pronounced for νµ than
for νµ—as a matter of fact, the νµ cross sections are re-
duced at backward angles (0.1 ≤ cos θµ ≤ 0.2). Overall,
it appears that the harder cutoff implied by the LQCD
calculation of GA(Q2) improves the accord of theory with
experiment, marginally for νµ and more substantially for
νµ. In view of the large errors and large normalization un-
certainties of the MiniBooNE and T2K data, however, we

caution the reader from drawing too definite conclusions
from the present analysis. Indeed more precise nucleon
form factors can be obtained through further lattice QCD
calculations or experiments on the nucleon and deuteron,
respectively.

Of course, many challenges remain ahead, to mention
just three: the inclusion of relativity and pion-production
mechanisms, and the treatment of heavier nuclei (no-
tably 40Ar). While some of these issues, for example the
implementation of relativistic dynamics via a relativistic
Hamiltonian along the lines of Ref. [71], could conceiv-
ably be incorporated in the present GFMC approach, it
is out of the question that such an approach could be uti-
lized to describe the ∆-resonance region of the cross sec-
tion or, even more remotely, extended to nuclei with mass
number much larger than 12, at least for the foreseeable
future. In fact, it maybe unnecessary, as more approxi-
mate methods exist to deal effectively with some of these
challenges, including factorization approaches based on
one- and two-nucleon spectral functions [28, 72] or on

T2K

MEC 
enhancement
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FIG. 2. The nucleon axial form factor FA(Q
2) determined us-

ing fits to neutrino-deuteron scattering data using the model-
independent z expansion from Ref. [65] (D2 Meyer et al.)
are shown as a blue band in the top panel. LQCD results
are shown for comparison from Ref. [30] (LQCD Bali et al.,
green), Ref. [34] (LQCD Park et al., red) and Ref. [35] (LQCD
Djukanovic et al., purple). Bands show combined statistical
and systematic uncertainties in all cases, see the main text
for more details. A dipole parameterization with MA = 1.0
GeV and a 1.4% uncertainty [107] is also shown for compari-
son (black). The lower panel shows the absolute value of the
di↵erence between D2 Meyer et al. and LQCD Bali et al.
results divided by their uncertainties added in quadrature,
denoted �FA/�; very similar results are obtained using the
other LQCD results.

factor results determined from experimental neutrino-
deuteron scattering data in Ref. [65]. Fits were performed
using results with Q

2
 1 GeV2 in Refs. [30, 34, 65] and

with Q
2
 0.7 GeV2 in Ref. [35] with the parameteri-

zation provided by the z expansion used to extrapolate
form factor results to larger Q

2. Clear agreement be-
tween di↵erent LQCD calculations can be seen. However,
the LQCD axial form factor results are 2-3� larger than
the results of Ref. [65] for Q

2 & 0.3 GeV2. The e↵ects of
this form factor tension on neutrino-nucleus cross section
predictions is studied using nuclear many-body calcula-
tions with the GFMC and SF methods in Sec. IV below.
The LQCD results of Refs. [30, 34] lead to nearly in-
distinguishable cross-section results that will be denoted
“LQCD Bali et al./Park et al.” or “LQCD” below and
used for comparison with the deuterium bubble-chamber
analysis of Ref. [65], denoted “D2 Meyer et al.” or “D2”
below.

IV. FLUX-AVERAGED CROSS SECTION
RESULTS

To evaluate both the nuclear model and nucleon axial
form factor dependence of neutrino-nucleus cross-section
predictions and their agreement with data, the GFMC
and spectral function methods are used to predict flux-
averaged cross sections that can be compared with data
from the T2K and MiniBooNE experiments. The Mini-
BooNE data for this comparison is a double di↵eren-
tial CCQE measurement where the main CC1⇡+ back-
ground has been subtracted using a tuned model [13],
and the T2K data is a double di↵erential CC0⇡ measure-
ment [114]. Muon neutrino flux-averaged cross sections
were calculated from

d�

dTµd cos ✓µ

=

Z
dE⌫�(E⌫)

d�(E⌫)

dTµd cos ✓µ

, (43)

where �(E⌫) are the normalized ⌫µ fluxes from Mini-
BooNE and T2K. Details on the neutrino fluxes for
each experiment can be found in the references above.

d�(E⌫)
dTµd cos ✓µ

are the corresponding inclusive cross sections

computed using the GFMC and SF methods as described
in Sec. II.

The fractional contribution of the axial form factor
to the one-body piece of the MiniBooNE flux-averaged
cross section is determined by including only pure axial
and axial-vector interference terms in the cross section
and shown in Fig. 3. These pure axial and axial-vector
interference terms account for half or more of the to-
tal one-body cross section for most Tµ and cos ✓µ, which
emphasizes the need for an accurate determination of the
nucleon axial form factor.

Figures 4 and 5 show the GFMC and SF predictions for
MiniBooNE and T2K, respectively, including the break-
down into one-body and two-body contributions. For
these comparisons we use the D2 Meyer et al. z expan-
sion for FA. Two features of the calculations should be
noted before discussing the results of these comparisons.
First, the uncertainty bands in the SF come only from the
axial form factor, while the GFMC error bands include
axial form factor uncertainties as well as a combination
of GFMC statistical errors and uncertainties associated
with the maximum-entropy inversion. Secondly, the axial
form factor enters into the SF only in the one-body term,
in contrast to the GFMC prediction where it enters into
both the one-body and one and two-body interference
term.

Below in Table I we quantify the di↵erences between
GFMC and SF predictions for both MiniBooNE and
T2K. The percent di↵erence in the di↵erential cross sec-
tions at each model’s peak are shown. The GFMC predic-
tions are up to 20% larger in backwards angle regions for
MiniBooNE and 13% larger for T2K in the same back-
ward region. The agreement between GFMC and SF
predictions is better at more forward angles but a 5-10%
di↵erence persists.
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D2 Meyer et al: fits to neutrino-deuteron 
scattering data
LQCD result: general agreement between 
the different calculations

LQCD results are 2-3σ larger than D2 
Meyer ones for Q2 > 0.3 GeV2
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Figure 1. (Left) Comparison of the nucleon axial-vector form factor GA

�
Q2

�
= �FA

�
Q2

�
as a function of the momentum

transfer squared Q2 obtained from (i) fit to the deuterium bubble-chamber data [27] shown by blue solid lines with error band;
(ii) fit to recent MINERvA antineutrino-hydrogen data [28], shown by black dashed lines and turquoise error band; and (iii)
lattice QCD result obtained by the PNDME Collaboration [29] shown by red dotted lines. (Right) A comparison of LQCD
axial-vector form factors from various collaborations labeled RQCD 19 [31], ETMC 21 [32], NME 22 [33], Mainz 22 [34], and
PNDME 23 [29]. The ⌫D [27] band is the same as the deuterium fit shown in the left panel.

contributions from all excited states that couple to,
and are thus created, by the interpolating opera-
tors used. This problem can be severe for nucleons
especially if towers of multihadron states, starting
with the N⇡ states that have mass gaps starting
at ⇡ 1200 MeV (much smaller than the N(1440)
radial excitation) as M⇡ ! 135 MeV, make large
contributions. This has been shown to be the case
for the axial channel [35]. The PNDME calculation
includes a detailed analysis to remove contributions
of such excited states.

• Satisfying, to within the expected size of discretiza-
tion errors, the partially conserved axial current
(PCAC) relation between the three form factors,
axial FA(Q2), induced pseudoscalar FP (Q2), and
pseudoscalarGP (Q2), obtained after removing con-
tributions from N⇡ excited states. Since the lat-
tice correlation functions automatically satisfy the
PCAC relation, this is a check of the decomposi-
tion into form factors that relies on the absence
of transition matrix elements to excited states. It
is a necessary requirement that must be satisfied
by all LQCD calculations of the three form fac-
tors. Note that PNDME paper uses the notation
GA(Q2) ⌘ �FA(Q2) and eGP (Q2) ⌘ �FP (Q2)/2.

• The data for FA(Q2)|{a,M⇡,M⇡L} obtained at dis-
crete values of Q2 on each of the thirteen ensem-
bles is well-fitted using the model-independent z-
expansion. The lattice size L is in units of M⇡.

• Extrapolation of the thirteen FA(Q2)|{a,M⇡,M⇡L}

to get the form factor at the physical point, a = 0
and M⇡ = 135 MeV, is carried out for eleven
equally spaced values of Q2 between 0–1 GeV2 us-
ing the leading-order corrections in {a,M⇡,M⇡L}.
This full analysis is done within a single overall
bootstrap process and the reasonableness of the re-
sulting error estimates are discussed. The finite-
volume artifacts are found to be small forM⇡L & 4,
which holds for all but two ensembles.

• All fits to FA(Q2) are presented using the z2 trun-
cation of the z-expansion. Results with z3 trun-
cation give essentially the same values, indicating
convergence. The z2 results were chosen to avoid
overparameterization as defined by the Akaike In-
formation Criterion (AIC) [36].

Raw lattice data with reliable error estimates are avail-
able at discrete values of Q2 over a limited range of mo-
mentum transfer, 0 < Q2 . 1 GeV2. As shown below,
for the calculation of the cross section outside this range,
a robust parameterization of the form factor is needed
to connect to the 1/Q4 behavior (with possible logarith-
mic corrections) expected at large Q2 [37, 38]. This is
typically done by enforcing sum rules [39]. This has not
been done in the PNDME analysis [29]. It is, there-
fore, reasonable to make comparisons of the lattice and
the experimental determinations for the (anti)neutrino-
nucleon charged-current elastic cross sections for di↵er-
ential distributions only at Q2 . Q2

max ⇡ 1 GeV2.
For inclusive cross sections with (anti)neutrino energy

E⌫ . M
�
⌧max + r2`

� ⇣
1 +

p
1 + 1/⌧max

⌘
⇡ 0.84 GeV,

O. Tomalak, R. Gupta, T. Battacharaya, 2307.14920

Comparison with recent MINERvA 
antineutrino-hydrogen charged-current 
measurements 

1-2σ agreement with MINERvA data and 
LQCD prediction by PNDME Collaboration 

Novel methods are needed to remove excited-
state contributions and discretization errors
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MiniBooNE 0.2 < cos ✓µ < 0.3 0.5 < cos ✓µ < 0.6 0.8 < cos ✓µ < 0.9
SF Di↵erence in d�peak (%) 16.3 17.1 9.3

GFMC Di↵erence in d�peak (%) 18.6 17.1 12.2

T2K 0.0 < cos ✓µ < 0.6 0.80 < cos ✓µ < 0.85 0.94 < cos ✓µ < 0.98
SF di↵erence in d�peak (%) 15.3 8.2 3.3

GFMC di↵erence in d�peak (%) 15.8 8.0 4.6

TABLE II. Percent increase in d�
dTµd cos ✓µ

at the quasielastic peak between predictions using LQCD Bali et al./Park et al.

z expansion versus D2 Meyer et al. z expansion nucleon axial form factor results.

FIG. 7. The ⌫µ flux-averaged di↵erential cross sections for MiniBooNE. The top panel shows Spectral Function predictions in
three bins of cos ✓µ with the D2 Meyer et al. z expansion FA in blue, as well as the LQCD Bali et al./Park et al. z expansion
FA in green. The dipole parameterization with MA = 1.0 GeV is shown without uncertainties as a black line. The lower
panel shows GFMC predictions using the same set of axial form factors, although in the GFMC case systematic uncertainties
including those arising from inversion of the Euclidean response functions are included in all results and the MA = 1.0 GeV
dipole form factor results are therefore shown as a black band.

dipole parameterization of FA as well as modified dipole
parameterizations of C

A

5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
15% variation in either C

A

5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.

Focusing now on FA, Figs. 7 and 8 compare flux-
averaged cross sections with di↵erent axial form factor
determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
Bali et al./Park et al. z expansion. One can see that

the LQCD z expansion increases the normalization of
the cross section across the whole phase space, with sig-
nificantly more enhancement in the bins of low cos ✓µ

corresponding to backward angles and higher Q
2. This

is quantified in Table II, which shows the percentage dif-
ference in the peak values of d�

dTµd cos ✓µ
for the LQCD

and D2 z expansion results. The LQCD prediction in-
creases the peak cross section between 10-20%, with the
discrepancy growing at backwards angles.

To investigate the sensitivity of the flux-averaged dif-
ferential cross section to variations in the axial form fac-
tor, derivatives of the MiniBooNE cross section with re-
spect to the model-independent z expansion parameters
ak are computed as described in Sec. III A. Figure 9
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T2K results; study of the dependence on the axial form factor:
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FIG. 8. The ⌫µ flux-averaged di↵erential cross sections for T2K. Details are as in Fig. 7.

FIG. 9. Percent change in peak value of MiniBooNE flux-averaged cross section for 0.5 < cos ✓µ < 0.6 vs. percent change in
the z expansion parameters ak. Results are shown for predictions using SF (black) and GFMC (blue) methods, including the
slopes extracted from linear fits.

shows the percent di↵erences in flux-averaged cross sec-
tions evaluated at the quasielastic peak that have been
computed using both GFMC and SF methods after in-
dependently varying each ak by ±5, 10%. The slopes of
the resulting linear fits provide model-independent deter-
minations of the sensitivity of the peak cross section to
variations in FA. It is clear that the impact of varying

each ak decreases as k increases, as expected since the
contribution of each ak is suppressed by the k-th power
of z(Q2) < 1. In particular, a 10% change in a0 results
in a 10% change to the peak cross section, while a 10%
change in a1 results in a 1% change in the peak cross
section, and 10% variation of ak with k � 2 leads to
sub-percent changes in the peak cross section. It is note-
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5 , and therefore it is possible that
these uncertainties are still underestimated. Even less is
known about the uncertainty in determining ⇤R [89]. A
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5 (0) or ⇤R changes the flux-
averaged cross section by roughly 5%, and it will there-
fore be important to obtain more information on these
parameters in order to achieve few-percent precision on
cross-section predictions.
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determinations: a dipole form factor with MA = 1.0
GeV, the D2 Meyer et al. z expansion, and the LQCD
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2. This
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FIG. 4. Flux averaged double di↵erential cross section for MiniBooNE. The nonrelativistic GFMC results (nr) are compared
to the results obtained in the ANB. They both include one- and two-body current contributions. The open circles are the cross
section to which the background reported in Ref. [32] is added.

applying the two-fragment model in the LAB frame in
the limit of large A, i.e. using the kinetic energy derived
from the relativistic momentum as discussed above.

IV. FLUX-AVERAGED CROSS SECTIONS

We compute the CC inclusive cross sections for di↵er-
ent kinematic setups, relevant for the MiniBooNE [22],
T2K [23], and MINER⌫A [24] experiments. Their in-
coming neutrino fluxes are characterized by average en-
ergies ranging from 700 MeV for T2K up to 6 GeV of the
medium-energy NuMI beam in MINER⌫A. Therefore,
the cross section receives contributions from the high mo-
mentum region of the phase space, where a proper treat-
ment of relativistic e↵ects become relevant. We account
for the latter by evaluating the GFMC electroweak re-
sponses in the ANB frame and boosting them back to
the LAB fram. As argued above, since the ANB frame
minimizes relativistic e↵ects, we find that applying the
two-fragment model brings about minimal di↵erences.

A. MiniBooNE

Our theoretical calculations for the flux averaged dou-
ble di↵erential cross section for the MiniBooNE kinemat-
ics are shown in Fig. 4. Both the nonrelativistic and
ANB results include one- and two-body current contri-
butions. The black squares correspond to the ‘CCQE-
like’ data reported in Ref. [32], whose extraction from
experimental measurements entails some model depen-
dence [41]. In particular, an irreducible ’non-CCQE’
background, mainly consisting of the production of a sin-
gle ⇡+ which is either absorbed or remains otherwise un-
detected [8, 42, 43], is estimated using the NUANCE
generator [44], and subtracted from the data. This
background is partly constrained by their own measure-
ment [45], but inconsistencies in the description of the
MiniBooNE ⇡+ production data and data from T2K [46]
and MINER⌫A [47] have been pointed out [41, 48–50].
Hence, to better gauge the uncertainties associated with
this procedure, it is best practice to add this background
back to the data points; we show the resulting distribu-
tion in Fig. 4 as empty circles. Finally, one should keep
in mind that the MiniBooNE collaboration reports an

A.Nikolakopoulos, A.Lovato, NR, Universe 9 (2023) 8, 367
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Reference state Hartree Fock: | i Include correlations through   operatoreT

Similarity transformed Hamiltonian e
�T

He
T | i = H̄| i = E| i

Expansion in second quantization single + doubles: 


T =
X

tiaa
†
aai +

X
tijaba

†
aa

†
baiaj + . . .

Polynomial scaling with the number of 
nucleons (predictions for 132Sn and 208Pb)

Electroweak response functions obtained 
using LIT

K�(!,�) =
1

⇡

�

�2 + (! � �)2

Longitudinal response 40Ca

40Ca

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

First ab-initio results for 
many-body system of  

40 nucleons

40Ca

13

✓ CC singles & doubles 
✓ varying underlying harmonic 

oscillator frequency 
✓ two different chiral Hamiltonians 
✓ inversion procedure

Lorentz Integral Transform + Coupled Cluster

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501  
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!Energy transfer!e ⇠
q2

2m

d�

QE

RES

DIS

 Factorization of the hadronic final states: 
allows to tackle exclusive channels + higher 
energies relevant for DUNE

Meson Exchange
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Short-Time Approximation

59

❖  Based on Factorization 

❖  Retains two-body physics 

❖  Response functions are given by the scattering from pairs of 

fully interacting nucleons that propagate into a correlated pair 
of nucleons


❖  Allows to retain both two-body correlations and currents at the 
vertex


❖  Provides “more” exclusive information in terms of nucleon-pair 
kinematics via the Response Densities 


The sum over all final states is replaced by a two nucleon propagator


The STA restricts the propagation to two active nucleons and allows to compute density 
functions of the CoM and relative momentum of the pair


NR, Frontiers in Phys. 8 (2020) 116 
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Short-Time Approximation
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Electron scattering from 4He:


❖  Response density as a function of (E,e)

❖  Give access to particular kinematics for the struck 

nucleon pair


Pastore et al. PRC101(2020)044612 
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Spectral function approach 
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At large momentum transfer, the scattering reduces to the sum of individual terms

The incoherent contribution of the one-body response reads

J↵ =
X

i

ji↵ | f i ! |pi ⌦ | f iA�1

⟨Ψf | jμ |Ψ0⟩ → ∑
k

[A−1
⟨Ψf | ⊗ ⟨k |]|Ψ0⟩⟨p |∑

i

jμ
i |k⟩

Rμν(q, ω) = ∑
p,k, f

∑
i

⟨k | jμ
i

† |p⟩⟨p | jν
i |k⟩[⟨Ψ0 | |Ψf⟩A−1 ⊗ |k⟩]

2

× δ(ω − e(p) − EA−1
f + EA

0 )

Rμν(q, ω) = ∑
f

⟨Ψ0 | jμ† |Ψf⟩⟨Ψf | jν |Ψ0⟩δ(E0 + ω − Ef )

The general expression for the hadronic tensor reads 

We employ the factorization ansatz and insert a single- nucleon completeness relation


| 0i | f iA�1

|pi
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Spectral function approach 
We can rewrite the delta using the identity:

δ(ω − e(p) − EA−1
f + E0) = ∫ dEδ(ω + E − e(p))δ(E + EA−1

f − E0)

The response tensor is given by

Rμν(q, ω) = ∫ d3kdE Ph(k, E)
m2

N

e(k)e(k + q) ∑
i

⟨k | jμ
i

† |p⟩⟨p | jν
i |k⟩δ(ω + E − e(k + q))

Spectral Function Implicit covariant normalization of the four-spinors

The hole spectral function reads 

Ph(k, E) = ∑
f

⟨Ψ0 |[|k⟩ ⊗ |ΨA−1
f ⟩]

2
× δ(E + EA−1

f − E0)

The proton spectral function  describes the probability distribution of removing a proton of 
momentum k from the target nucleus, leaving the residual system with excitation energy E

Ph(k, E)

62
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Spectral function approach 
The response tensor is given by

Rμν(q, ω) = ∫ d3kdE Ph(k, E)
m2

N

e(k)e(k + q) ∑
i

⟨k | jμ
i

† |p⟩⟨p | jν
i |k⟩δ(ω + E − e(k + q)) 4

Σ
i

2 2
q,ν q,ν

i

FIG. 2 Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum
of cross sections describing scattering off individual nucleons,
the recoiling (A − 1)-nucleon system acting as a spectator.

px (in order to simplify the notation, spin indices will be
omitted)

|X⟩ → |x,px⟩ ⊗ |R,pR⟩ . (11)

Using Eq. (11) we can replace

∑

X

|X⟩⟨X | →
∑

x

∫
d3px|x,px⟩⟨px, x|

×
∑

R

d3pR|R,pR⟩⟨pR,R| . (12)

Substitution of Eqs. (10)-(12) into Eq. (4) and insertion
of a complete set of free nucleon states, satisfying

∫
d3k |N,k⟩⟨k, N| = 1 , (13)

then leads to the factorization of the nuclear current ma-
trix element according to

⟨0|Jµ|X⟩ =

(
m

√
|pR|2 + m2

)1/2

⟨0|R,pR; N,−pR⟩

×
∑

i

⟨−pR, N |jµ
i |x,px⟩ , (14)

where the factor (m/
√
|pR|2 + m2)1/2 takes into account

the implicit covariant normalization of ⟨−pR, N | in the
matrix element of jµ

i .
As a result, the incoherent contribution to Eq. (4) can

be rewritten in the form

Wµν =
∑

x,R

∫
d3pR d3px|⟨0|R,pR; N,−pR⟩|2

×
m

ER

∑

i

⟨−pR, N|jµ
i |x,px⟩⟨px, x|jν

i |N,−pR⟩

× δ(3)(q − pR − px)δ(ω + E0 − ER − Ex), (15)

where E0 is the target ground state energy and ER =√
|pR|2 + M2

R, MR being the mass of the recoiling sys-
tem and Ex the energy of the final state X.

Finally, using the identity

δ(ω + E0 − ER − Ex) =

∫
dE δ(E − m + E0 − ER)

× δ(ω − E + m − Ex) , (16)

and defining the nucleon spectral function as

SN (k, E) =
∑

R

|⟨0|R,−k; N,k⟩|2

× δ(E − m + E0 − ER) , (17)

where the index N = p, n labels either a proton or a
neutron, we can cast Eq. (4) in the form

Wµν(q,ω) =

∫
d3k dE

(
m

Ek

)[
ZSp(k, E)wµν

p

+ (A − Z)Sn(k, E)wµν
n ] , (18)

A and Z being the target mass number and number of
protons, respectively. In Eq. (18), Ek =

√
|k2| + m2 and

wµν
N =

∑

x

⟨k, N|jµ
N |x,k + q⟩⟨k + q, x|jν

N |N,k⟩

× δ(ω̃ + Ek − Ex) . (19)

with (see Eqs. (15) and (17))

ω̃ = Ex−Ek = E0+ω−ER−Ek = ω−E+m−Ek . (20)

The above equations show that within the IA scheme the
definition of the electron-nucleus cross section involves
two important elements: i) the tensor wµν

N , defined by
Eq. (19), describing the electromagnetic interactions of
a bound nucleon carrying momentum k and ii) the spec-
tral function, defined by Eq. (17), yielding its momentum
and removal energy distribution. These quantities will be
further discussed in the following sections.

B. Electron scattering off a bound nucleon

While in electron-nucleon scattering in free space the
struck particle is given the entire four momentum transfer
q ≡ (ω,q), in a scattering process involving a bound
nucleon a fraction δω of the energy loss goes into the
spectator system. This mechanism emerges in a most
natural fashion from the IA formalism.

Assuming that the current operators are not modi-
fied by the nuclear environment, the quantity defined
by Eq. (19) can be identified with the tensor describing
electron scattering off a free nucleon at four momentum
transfer q̃ ≡ (q, ω̃). Hence, Eq. (19) shows that within IA
binding is taken into account through the replacement

q ≡ (ω,q) → q̃ ≡ (ω̃,q) . (21)

The interpretation of δω = ω − ω̃ as the amount of
energy going into the recoiling spectator system becomes
particularly transparent in the limit |k|/m ≪ 1, in which
Eq. (20) yields δω = E.

In the case of quasielastic scattering, to be discussed
in this review, wµν

N of Eq. (19) can be obtained from the
general expression (compare to Eq. (5))

wµν
N = wN

1

(
−gµν +

q̃µq̃ν

q̃2

)

+
wN

2

m2

(
kµ −

(kq̃)

q̃2
q̃µ

)(
kν −

(kq̃)

q̃2
q̃ν

)
, (22)

The nuclear cross section is replaced by the incoherent sum of cross sections describing scattering off 
individual nucleons, the recoiling (A − 1)-nucleon system acting as a spectator.


The scattering takes place on a bound nucleon, how do we introduce this effect?

63
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The nucleon tensor can be rewritten as


rμν
N = ∑

i

⟨k | jμ
i

† |p⟩⟨p | jν
i |k⟩δ(ω̃ + e(k) − e(k + q))

Where:              
ω̃ = e(k + q) − e(k) = E0 + ω − EA−1
f − e(k) = ω − E + m − e(k)

We can identify the nucleon tensor as describing the scattering off a free nucleon at four momentum

q = (ω, q) → q̃ = (ω̃, q)

The quantity     is the amount of energy going into the recoiling spectator system δω = ω − ω̃

Let’s rewrite the explicit expression of the nucleon tensor in the case of quasi elastic scattering:


rμν
N = wN

1 ( − gμν +
q̃μq̃ν

q̃2 ) +
wN

2

m2 (kμ −
kq̃
q̃2

q̃μ)(kν −
kq̃
q̃2

q̃ν)
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While the replacement of  is reasonable on physics grounds, it poses a considerable conceptual 
problem in that it leads to a violation of current conservation, which requires


ω → ω̃

r̃μν
N = rμν

N (q̃)

qμrμν
N = 0

A possibility is to adopt a convention from de Forest, where the different components of the tensor are defined

taking z along the q directions 


For  and/or μ ν = 0

Different procedures can be used to restore gauge invariance. However, this only affects the longitudinal 
response. As a consequence, they are expected to become less and less important as the momentum transfer 
increases. 


r̃3ν
N =

ω
|q |

r0ν
N (q̃)
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• Single-nucleon spectral function:

Ph(k, E) = PMF(k, E) + Pcorr(k, E)

J. W. VAN ORDEN AND T. W. DONNELLY PHYSICAL REVIEW C 100, 044620 (2019)

reproduced by means of an IPSM approximation with the in-
dividual shells artificially widened using Lorentzians, together
with a representation of contributions from correlations which
in the model of the Rome group are calculated in nuclear
matter. These are then produced for finite nuclei by means of
the LDA. The resulting spectral function is of the form,

SRome(pm, Em) = SIPSM(pm,Em ) + Scorr (pm, Em). (56)

Any constants need to combine the two combinations are
adjusted so that the total satisfies the normalization condition
in Eq. (3). This, and similar approaches, represent the current
state of the art. We will use this spectral function, which we
will refer to as the Rome spectral function, as a benchmark
against which the other models used here will be compared.

IV. RESULTS

A. Spectral functions

We now proceed with a discussion of several types of
spectral functions of varying degrees of sophistication—all
of the spectral functions and cross sections shown here are
for 16O. We consider four models for the spectral functions
beginning with a simple independent-particle shell model with
relativistic mean-field single-particle wave functions (IPSM-
RMF) which captures the basic essentials of the nuclear shell
structure of a nucleus such as 16O. This is followed by going
to the other extreme and discussing the relativistic Fermi gas
model which is designed to contain only the basic properties
of infinite nuclear matter; it is, in fact, a model where A → ∞
and the only aspect of finite nuclei it contains is a scale,
the Fermi momentum kF . This is included here despite its
simplicity (as we shall see, too simple for semi-inclusive
studies) because it forms the basis for many of the event
generators currently being employed. Attempts have been
made to improve on the extreme RFG model by incorporat-
ing a density-dependent Fermi momentum that follows the
ground-state density of a given nucleus, the so-called local

FIG. 6. Independent-particle shell-model spectral function for
16O using RMF wave functions [8] for the hole states.

FIG. 7. Relativistic Fermi gas spectral function for 16O using
kF = 230 MeV/c.

density approximation, and this provides the third model
in the present study. These simplified approaches are then
compared with a state of the art spectral function obtained
by the Rome group. In the following sections we proceed to
obtain the inclusive and semi-inclusive cross sections using
the four models, and there we find that the former do not
differ significantly, although when a nucleon is presumed
to be detected (semi-inclusive reactions), the resulting cross
sections are strongly dependent on the level of sophistication
contained in the various models.

1. IPSM-RMF spectral function

An example of IPSM spectral functions is presented in
Fig. 6. This uses the relativistic mean-field model (RMF) of
Horowitz and Serot [8] for 16O to obtain the wave functions
for the shells occupied by neutrons. In the case of a model
such as this, that produces wave functions in the form of

FIG. 8. Spectral function in the local density approximation. The
coordinate space ρ(r) is obtained from a three-parameter Fermi
function fit to the proton distribution for 16O.
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• Within the Global Fermi gas, one can write


PFG(k, E) = δ(E − ϵB)θ(kF − |k | )
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Figure 1: VMC mean-field and full momentum distributions of 4He.

Z
dE

d
3
k

(2⇡)3
Pn(k, E) =

Z
d
3
k

(2⇡)3
nn(k) = A� Z , (4)

where Z is the number of protons and A is the number of nucleons of a given
nucleus. This normalization is consistent with the one of the variational
Monte Carlo (VMC) single-nucleon momentum distribution reported in [2].

Spectral function of
4
He

For clarity, let us deal with the proton spectral function first. The single-
nucleon (mean-field) contribution P

MF

p (k, E) corresponds to identifying | A�1

n i
with | 3

H

0
i, the ground-state of 3H

P
MF

p (k, E) = n
MF

p (k)�
⇣
E � B4He +B3H � k

2

2m3H

⌘
. (5)

where B4He ' 28.30 MeV and B3H ' 8.48 MeV are the binding energies of
4He and 3H, respectively and m3H is the mass of the recoiling nucleus. In the
above equation we introduced the mean-field proton momentum distribution

n
MF

p (k) = |h 4
He

0
|[|ki ⌦ | 3

H

0
i]|2 , (6)

in which h 4
He

0
|[|ki ⌦ | 3

H

0
i is the Fourier transform of the single-nucleon

radial overlap that can be computed within both VMC and Green’s function
Monte Carlo (GFMC) [3].

2

n(k) = ∫ dEPh(k, E)

• Single-nucleon momentum distribution: 

From the Spectral function we can obtain  

S(E) = ∫ d3kPh(k, E)

• Missing energy distribution

Experimental spectral functions

At each electron angle the above procedure was used for
each proton angle to obtain experimental (distorted, as de-
fined above) spectral functions and these were integrated
over the proton angles to obtain the experimental spectral

functions for that target, electron angle, and Q2. These
summed spectral functions are functions of both missing mo-
mentum and missing energy and therefore the missing mo-
mentum was integrated over in order to obtain the energy
spectral functions and the missing energy was integrated
over to obtain momentum distributions. The momentum dis-
tributions are shown in Figs. 6, 7, and 8.
The carbon momentum distributions are shown in Fig. 6.

They have been normalized to the spectral functions at Q2 of
1.8 !GeV/c"2 to remove the effect of variation in final state
interactions between the different Q2 points. These spectra
show little variation with Q2. The dip at zero missing mo-
mentum for missing energy between 10 and 25 MeV is at-
tributable to the fact that the protons in this energy region are
primarily l=1 while only l=0 protons can have zero missing
momentum. There is a left-right (or ±) asymmetry in the
momentum distributions that is discussed below. As with car-
bon the iron momentum distributions (Fig. 7) and gold mo-
mentum distributions (Fig. 8) show little change with Q2.

Independent particle shell model

Model spectral functions were calculated in the IPSM ap-
proximation, in which the nucleus is considered a sum of
nucleons occupying distinct shells with each proton in the
lowest possible shell. The parameters of the spectral function
were adjusted to reproduce data from low-Q2 A!e, e!p" and
A!p, 2p" experiments. For 12C the removal energy and energy
width of the two shells, s1/2 and p3/2, are based on the Saclay
12C!e, e!p" data [28]. The removal energy and energy width
for the 56Fe shells were based on the 58Ni!e, e!p" data from
Saclay [28], with the removal energy corrected for the
2 MeV difference between 56Fe and 58Ni. The removal en-
ergy for the shells not resolved in the Saclay experiment

FIG. 7. (Color online) Momentum distributions for iron inte-
grated over an Em range 0!Em!80 MeV. They have been normal-
ized so that the integral of the measured spectral functions over
#pm#!300 MeV/c is equal to the integral of the spectral function at
Q2 of 1.8 !GeV/c"2.

FIG. 8. Momentum distributions for gold integrated over an Em
range 0!Em!80 MeV. They have been normalized so that the in-
tegral of the measured spectral functions over #pm#!300 MeV/c is
equal to the integral of the spectral function at Q2 of 1.8 !GeV/c"2.

FIG. 9. Measured missing energy spectral function for carbon at
Q2=1.28 !GeV/c"2 compared to independent particle shell model
(IPSM).

D. DUTTA et al. PHYSICAL REVIEW C 68, 064603 (2003)

064603-10

D. Dutta, et al., Phys. Rev. C 68, 064603 (2003).

4He
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• 16O Spectral Function obtained within CBF 
and using the Local Density Approximation

136 Many-body theory exposed!

Fig. 7.6 Spectroscopic factors from the (e, e'p) reaction as a function of target mass.
The dotted line with a height of 1, illustrates the prediction of the independent-particle
model. Data have been obtained at the NIKHEF accelerator in Amsterdam [Lapikas
(1993)].

momentum can also have negative values when it is directed opposite to the
momentum transferred to the target. A correct description of the reaction
requires a good fit at all values of this quantity.

Figure 7.5 demonstrates that the shapes of the valence nucleon wave
functions accurately describe the observed cross sections. Such wave func-
tions have been employed for years in nuclear-structure calculations, which
have relied on the independent-particle model. The description of the data
in Fig. 7.5, however, requires a significant departure of the independent-
particle model, with regard to the integral of the square of these wave
functions. Indeed, the spectroscopic factors, necessary to obtain the solid
curves, are substantially less than 1. Similar spectroscopic factors are
extracted for nuclei all over the periodic table4. A compilation for the
spectroscopic factor of the last valence orbit for different nuclei, adapted
from [Lapikas (1993)], is shown in Fig. 7.6. The results in Fig. 7.6 indicate
that there is an essentially global reduction of the sp strength of about
35% for these valence holes in most nuclei. Such a substantial deviation
from the prediction of the independent-particle model, requires a detailed

4Most experiments have been performed on closed-shell nuclei.

PLDA(k, E) = PMF (k, E) + Pcorr(k, E)

X

n

Zn|�n(k)|2Fn(E � En)

O. Benhar, A. Fabrocini, and S. Fantoni, Nucl. Phys. A505, 267 (1989).  

O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Phys. A579, 493 (1994) 
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O. Benhar, A. Fabrocini, and S. Fantoni, Nucl. Phys. A505, 267 (1989).  

• 16O Spectral Function obtained within CBF 
and using the Local Density Approximation Z

d3rPNM
corr (k, E; ⇢ = ⇢A(r))

• The Correlated Basis Function approach accounts for 
correlations induced by the nuclear interactions

�n(x1 . . . xA) F �n(x1 . . . xA)

H =
X

i

p2
i

2m
+

X

i<j

vij +
X

i<j<k

Vijk + . . .

Argonne v18 UIX, IL7

• The one-body Spectral function of nuclear matter:

PLDA(k, E) = PMF (k, E) + Pcorr(k, E)
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PMF

p (k, E) = nMF

p (k)�
⇣
E �B4He +B3H � k2

2m3H

⌘

|h 
4
He

0
|[|ki ⌦ | 

3
H

0
i]|2

P⌧k(k, E) =
X

n

|h A
0 |[|ki | A�1

n i]|2

⇥ �(E + EA
0 � EA�1

n )

• The single-nucleon overlap has been computed within 
VMC ( center of mass motion fully accounted for)0 2 4 6 8 100.0
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QMC Spectral Function of 4He

mailto:nrocco@fnal.gov


Noemi Rocco, nrocco@fnal.gov71

P corr
p (k, E) =

X

n

Z
d3k0

(2⇡)3
|h A

0 |[|ki |k0i | A�2
n i]|2�(E + EA

0 � e(k0)� EA�2
n )

��Ј
��φ
��ϵ
��ϯ
��Κ
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 Only SRC pairs should be considered:                and                       be orthogonalized |k0i| A�2

n i

One can introduce cuts on the 
relative distance between the 
particles in the two-body 
momentum distribution 

Using QMC techniques
X

⌧k0=p,n

np,⌧k0 (k,k
0)�

⇣
E �B4He � e(k0) +BA�2 �

(k+ k0)2

2mA�2

⌘
A

| A�1
0 i

QMC Spectral Function of 4He
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• The p-shell contribution has been obtained 
by FT the radial overlaps:

12C(0+) !11 B(3/2�) + p
12C(0+) !11 B(1/2�) + p
12C(0+) !11 B(3/2�)⇤ + p .

• The quenching of the spectroscopic factors automatically emerges from the VMC calculations

17

Extended Data Fig. 8. | Radiative and coulomb corrections. The combined radiative and Coulomb corrections,
RCA/d(xB), for (e, e

0p) events for nucleus A relative to the deuteron for (a) carbon, (b) aluminum, (c) iron, and (d) lead. The
points show the correction factors and the error bars show the 1� or 68% confidence limits.

Extended Data Fig. 9. | Calculated nucleon momentum distributions in
12
C. The filled blue circles represent the

total momentum distribution n(k) of 12C computed within the VMC method. The solid orange line shows the sum of the p-wave
overlaps between the 12C and 11B+p VMC wave functions. The momentum distributions obtained by adding to the p-wave
overlaps the di↵erent prescription for the s-wave contribution are displayed by the green dashed line (harmonic oscillator),
dotted red line (Wood-Saxon) and dash-dotted purple line (s-wave overlaps between 4He and the 3H+p VMC wave functions).

Computing the s-shell contribution is non trivial 
within VMC. We explored different alternatives:

• Quenched Harmonic Oscillator

• Quenched Wood Saxon 

• VMC overlap associated for the 
  transition

4
He(0

+
) ! 3

H(1/2+) + p

R. Crespo, et al, Phys.Lett.B 803 (2020) 135355

Korover, et al, CLAS collaboration submitted (2021)
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• e -3H: inclusive cross section

• Comparisons among GFMC, SF, and STA approaches: first step to precisely quantify the 
uncertainties inherent to the factorization of the final state. 

• Gauge the role of relativistic effects in the energy region relevant for neutrino experiments. 

14

FIG. 5: Inclusive double-di↵erential cross sections for electron scattering on 3H.

L. Andreoli, NR, et al, PRC 105 (2022) 1, 014002 

3H
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• The Spectral Function gives the probability distribution of removing a nucleon with momentum k, 
leaving the spectator system with an excitation energy E

• The two points Green’s Function describes nucleon propagation in the nuclear medium 

Ph(k, E) =
X

f

|h A
0 |[|ki ⌦ | A�1

f i]|2�(E + E
A�1
f � E

A
0 )

=
1

⇡

X

↵�

�̃⇤
�(k)�̃↵(k)Imh A

0 |a
†
�

1

E + (H � E
A
0 )� i✏

a↵| A
0 i .

Gh,↵�(E) = h A
0 |a

†
�

1

E + (H � E
A
0 )� i✏

a↵| A
0 i

• The nuclear matrix element can be rewritten in terms of the transition amplitude

[ h A�1
f |⌦ hk|]| A

0 i =
X

↵

Yf,↵�̃↵(k) =
X

↵

�̃↵(k)h A�1
f |a↵| A

0 i ,
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G↵�(E) = G0
↵�(E) +

X

��

G0
↵�⌃

⇤
��(E)G��(E)

• The one-body Green’s function is completely determined by solving the Dyson equation 

initial reference state, HF

⌃⇤ = ⌃⇤[G(E)]•                              , an iterative procedure is required to solve the Dyson equation self-consistently

• The self-energy is systematically calculated in a non-perturbative fashion within the Algebraic 
Diagrammatic Construction (ADC). The saturating chiral interaction at NNLO (NNLOsat) is used.

2nd and 3rd order 
diagrams with 2h1p 
(and 2p1h) 
intermediate 
configurations

✤ V. Somà et al, Phys.Rev. C87 (2013) no.1, 011303 : generalization of this formalism within Gorkov 
theory allows to describe open-shell nuclei such as Ar40, Ti48 …
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✐ C. Barbieri, NR, and V. Somà, PRC 100, no.6, 062501 (2019) 

40Ar(e,e’) and 48Ti(e,e’) cross sections

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120 exp.
SF IA
SF IA+FSI

ω  [GeV]

d𝜎
/d
Ω

eʹ 
dE

eʹ 
 [n

b/
st

 M
eV

]

Ar(e,eʹ)

0

20

40

60

80

100

120

140

160

Ee = 2.2 GeV,  𝜃e = 15.5°

Ti(e,eʹ)

The band comes from a first estimate of the uncertainty on the spectral function calculation 
obtained by varying the model-space and the harmonic oscillator frequency 
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• Lepton - nucleon interactions 

• Modeling nuclear structure

• Ab - initio description of lepton - nucleus interactions

• Factorization approach + spectral function : QE

• More spectral function

• Factorization approach + spectral function : MEC + interference (+pion)

• Scaling properties 

• ACHILLES, BSM studies with the spectral function approach
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Extra — Structure function contributions

W!"

2Mi
= − g!"W1 +

P!P"

Mi
2 W2 + i

#!"$%P$q%

2Mi
2 W3 +

q!q"

Mi
2 W4

+
P!q" + P"q!

2Mi
2 W5 + i

P!q" − P"q!

2Mi
2 W6. !8"

Taking q! in the z direction, i.e., q!= #q#u!z, and P!= !Mi ,0!", it
is straightforward to find the six structure functions in terms
of the W00, Wxx=Wyy, Wzz, Wxy, and W0z components of the
hadronic tensor.2 After contracting with the leptonic tensor
we obtain

d2&"l

d'!k̂!"dEl!
=

#k!!#El!MiG2

(2 $2W1sin2
)!
2
+W2cos2

)!
2

−W3
E" + El!
Mi

sin2
)!
2
+

ml
2

El!!El! + #k!!#"
%W1 cos)!

−
W2

2
cos )! +

W3

2
&El! + #k!!#

Mi
−
E" + El!
Mi

cos )!'
+
W4

2
& ml

2

Mi
2 cos )! +

2El!!El! + #k!!#"
Mi
2 sin2)!'

−W5
El! + #k!!#
2Mi

() !10"

with E" the incoming neutrino energy and )! the outgoing
lepton scattering angle. The cross section does not depend on
Mi, as can be seen from the relations of Eq. (9), and also note
that the structure function W6 does not contribute.

B. Hadronic tensor and the gauge boson self-energy
in the nuclear medium

In our MBF, the hadronic tensor is determined by the
W+-boson self-energy, *W

!+!q", in the nuclear medium. We
follow here the formalism of Ref. [4], and we evaluate the
self-energy, ,"

r!k ;+", of a neutrino, with four-momentum k
and helicity r, moving in infinite nuclear matter of density +.
Diagrammatically this is depicted in Fig. 1, and we get

− i,"
r!k;+" =* d4q

!2("4
ūr!k"$− i g

2+2$L
!iD!-!q"

.,− i*W
-/!q;+"-iD/&!q"i

k”! + ml

k!2 − ml
2 + i#

.&− i g
2+2'$L

&)ur!k" !11"

with D!-!q"= !−g!-+q!q- /MW
2 " / !q2−MW

2 + i#", *W
!0!q ;+" is

the virtualW+ self-energy in the medium, $L
!=$!!1−$5", and

the spinor normalization is given by ūu=2m. Since right-
handed neutrinos are sterile, only the left-handed neutrino
self-energy, ,"!k ;+", is not zero and obviously ,"!k ;+"
=.r,"

r!k ;+". The sum over helicities leads to traces in
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handed neutrinos are sterile, only the left-handed neutrino
self-energy, ,"!k ;+", is not zero and obviously ,"!k ;+"
=.r,"

r!k ;+". The sum over helicities leads to traces in
Dirac’s space and thus we get

,"!k;+" =
8iG

+2MW
2 * d4q

!2("4
L0!*W

!0!q;+"
k!2 − ml

2 + i#
. !12"

The neutrino disappears from the elastic flux, by induc-
ing one-particle-one-hole (1p1h), 2p2h,… excitations,
1!1232"-hole !1h" excitations, or creating pions, etc., at a
rate given by

2!k;+" = −
1
k0
Im ,"!k;+" . !13"

We get the imaginary part of ," by using Cutkosky’s rules.
In this case we cut with a straight vertical line (see Fig. 1) the
intermediate lepton state and those implied by the W-boson
polarization (shaded region). Those states are then placed on
the shell by taking the imaginary part of the propagator, self-
energy, etc. Thus, we obtain for k030

Im ,"!k" =
8G

+2MW
2 * d3k!

!2("3
4!q0"
2El!

Im/*W
!0!q;+"L0!0

!14"

2These relations read

W1 =
Wxx

2Mi
, W2 =

1
2Mi

&W00 +Wxx +
!q0"2

#q! #2
!Wzz −Wxx" − 2

q0

#q! #
ReW0z' ,

W3 = − i
Wxy

#q! #
,

W4 =
Mi

2#q! #2
!Wzz −Wxx", W5 =

1
#q! #&ReW0z −

q0

#q! #
!Wzz −Wxx"' , !9"

W6 =
ImW0z

#q! #
.

FIG. 1. Diagrammatic representation of the neutrino self-energy
in nuclear matter.

INCLUSIVE QUASIELASTIC CHARGED-CURRENT… PHYSICAL REVIEW C 70, 055503 (2004)

055503-3

mailto:nrocco@fnal.gov

