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Introduction
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The Strong Force, Quantum Chromodynamics (QCD)

u
u d

p u
d̄
π Quarks and gluons bind into hadronic matter

Form into q–q̄ pairs (mesons), or qqq triplets (baryons)

Mass gluon 0
Mass up quark 2 MeV
Mass down quark 5 MeV
Mass pion 140 MeV
Mass nucleon 940 MeV

Mass of constituents � mass of hadrons
=⇒ a lot of energy stored in gluon field!
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String Breaking
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[Phys.Rev.D 71 (2005)]

Not possible to isolate free quarks

V (r) grows proportional to quark separation r

=⇒ requires energy to pull quarks apart
=⇒ quarks connected by flux tube “string”

Large r: string breaks, forms 2-meson state
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QCD and Confinement

αs ≈ g2

4π runs with center of mass energy Q

Q → ∞ =⇒ αs → 0 (asymptotic freedom)

Perturbative QCD with expansion parameter αs � 1
for a generic observable f :
fQCD = f0 + f1αs + f2α2

s + ...

Use Feynman diagram technology up to N -loop order

Coupling gets strong (αs ∼ 1) at small Q
=⇒ quarks confined to hadrons
=⇒ perturbative expansion strategy fails

Need different technique to tackle
nonperturbative regime: Lattice QCD

[PDG (2023)]

Perturbative

Nonperturbative
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What is Lattice Quantum Chromodynamics (LQCD)?
LQCD is the only known mathematically rigorous method

to compute properties of hadrons in nonperturbative QCD

Constructed from quark and gluon degrees of freedom

After removing systematic biases, predictions of QCD (not an approximation!)

X Complementary to experiment
X Controlled nuclear effects
X Realistic, robust uncertainty estimates
X Systematically improvable
X Computers are (relatively) inexpensive

Experiment

Monte
Carlo

Nucleon

Nuclear
Lattice QCD
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Successes of Lattice QCD
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[Ann.Rev.Nucl.Part. 62 (2012)]

Open symbol: input
Closed symbol: (pre/post)diction
Line: experiment

I (Very) few inputs, (very) many outputs I Heavily constrained by SM

I Widely used in flavor physics (CKM matrix elements)
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Constructing a LQCD Computation
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The (Minkowski) Path Integral (1/2)

The bold nomenclature will appear again later...

Starting with the time-dependent Schrödinger equation: ∂
∂t

∣∣ψ〉
= − iĤ

~

∣∣ψ〉
, (~ = 1)

Solve the differential equation to relate time 0 to time t∣∣ψ(t)
〉

= exp
[

− iĤt
]∣∣ψ(0)

〉
=⇒

〈
x
∣∣ψ(t)

〉
=

∫
dx′

〈
x
∣∣exp

[
− iĤt

]∣∣x′
〉︸ ︷︷ ︸

D−1(x,x′;t)

〈
x′

∣∣ψ(0)
〉

with the propagator defined by D−1(x, x′; t) =
〈
x
∣∣exp

[
− iĤt

]∣∣x′
〉

.
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The (Minkowski) Path Integral (2/2)

The bold nomenclature will appear again later...

Use an operator χ̂ to create Ĥ eigenstates |ψ〉 out of the vacuum |0〉:

χ̂(t)
∣∣0〉

=
∑

ψ

∣∣ψ(t)
〉 〈
ψ(t)

∣∣χ̂(t)
∣∣0〉︸ ︷︷ ︸

zψ

=
∑

ψ

∫
dx

∣∣x〉〈
x
∣∣ψ(t)

〉
zψ

with overlap zψ =
〈
ψ(t)

∣∣χ̂(t)
∣∣0〉

=
〈
ψ(0)

∣∣χ̂(0)
∣∣0〉

(for example: pion decay constant fπ = 〈π|P|0〉)

Combine the operator and the state propagator into a correlation function〈
χ̂(t)χ̂(0)

〉︸ ︷︷ ︸ = Z−1
〈

0
∣∣χ̂(t)χ̂(0)

∣∣0〉
= Z−1

∑
ψ

∫
dxdx′

∣∣zψ∣∣2〈
ψ

∣∣x〉〈
x
∣∣exp

[
− iĤt

]∣∣x′
〉〈
x′

∣∣ψ〉
(Vacuum polarization Z = Tr

[
exp[−iĤt]

]
)

The remaining terms are eigenstate wavefunctions, such as a plane wave 〈x′|ψ〉 ∼ e−ip·x′
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Path Integral for LQCD
LQCD is a numerical evaluation of the path integral, with additional (well-controlled) modifications:

I Finite compute power =⇒ finite spacetime lattice
introduces ultraviolet, infrared regulators

(lattice spacing a, lattice volume L/a)

I Preserve gauge symmetry
quarks → lattice sites q(x)

gluons → lattice links Uµ(x) = e
−ig

∫ x+aµ̂

x
Aµ(x′)dx′

I Sign problem from propagator phase ∼ exp[−iĤt]

=⇒ change to Euclidean time (t → −iτ) and partition function Z = exp[−Ĥτ ]
=⇒ cannot compute dynamics/cross sections directly in LQCD

L

a

Uµ

ψ

ψ

ψ

ψψ̄
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Dissecting a LQCD Computation
In QCD, the path integral is an expectation value of a combination of operators Oψ :

〈
Oψ

〉
= Z−1

∫ gluon︷︸︸︷
DA

quark︷ ︸︸ ︷
DψDψ

action︷ ︸︸ ︷
exp[−S] Oψ

integrate out by hand〈
Oψ

〉
= Z−1

∫
DA det

[
/D +m

]
exp[−S] Oψ Markov Chain Monte Carlo (MCMC)

& importance sampling
Generate ensemble of gauge configurations Un〈

Oψ

〉
= 1

N

∑N

n
Oψ [Un]

“sea quark” loops
embedded in Un
“2+1” flavor “valence quark” propagators

computed on each gauge configuration
contracted to have hadron quantum numbers

[ψψ]n = ( /D[Un] +m)−1

Computation is “just” an average of correlation functions computed on sampled gauge snapshots

Computationally expensive:
I generate gauge ensembles/configurations (MCMC)
I valence quark propagators (large sparse matrix inversions)

Once these done, lots of potential data reuse
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LQCD Computation Anatomy

Write correlation functions with complete set of states 1 =
∑

n
|n〉〈n|,

including ground state and excited states

2-point function
〈N(t)� (0)〉 =

∑
n

〈0|N|n〉︸ ︷︷ ︸
“sink”

〈n|� |0〉︸ ︷︷ ︸
“source”

e−Ent

3-point function
〈N(t)⊗(τ)� (0)〉 =

∑
mn

〈0|N|n〉〈n|⊗|m〉〈m|� |0〉e−En(t−τ)−Emτ

only valence quarks drawn in diagrams
implicit qq̄ loops+gluons to all orders

q, t q, 0
2-point

0, t −q, 0

q, τ

3-point

Extract masses from 2-point

, matrix elements from 3-point

Source/sink operators (�,N) have different overlaps onto states m, n

Source and sink operators are instructions on how to contract quark propagators:

O = q̄γ5q, /D−1(t, 0) = q(t)q̄(0) =⇒
〈

O(t)O(0)
〉

= Tr
[
/D

−1(t, 0)γ5 /D
−1(0, t)γ5

]
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Extracting Physics from LQCD
Numerical values are all dimensionless (“lattice units,” a ·MX),

must be matched to physical world

LQCD Inputs: am(u,d),bare
ams,bare
β = 6/g2

bare

Scale setting (β → a): e.g. a−1 [GeV] = MΩ
aMΩ

[expt]
[LQCD]

Quark mass tuning: e.g. Mπ/MΩ, MK/MΩ

L

a

Uµ

ψ

ψ

ψ

ψψ̄

Each gauge ensemble generated with fixed a, L/a, aMπ ...

“Complete” error budget =⇒ extrapolation in a, L, Mπ ; guided by EFT, FVχPT

I a → 0 (continuum limit)
I L → ∞ (infinite volume limit)
I Mπ → Mphys

π (chiral limit)
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Additional Peculiarities about LQCD

Some tricks & quirks about LQCD computations:

I Boundary Conditions =⇒ directly related to finite-volume effects –
- spatial, temporal boundaries can be manipulated
- periodic or open boundaries are most common, but some exotics (e.g. G-parity)

I Partial quenching, mixed action –
- action for generating gauge ensemble 6= action for producing quark propagators
- usually saves computing time, but sometimes spoils physics interpretation

I Fermion Doubling –
- No-go theorem: cannot have a doubler-free theory of lattice fermions with good chiral symmetry
- doublers: 2D copies of all fermions in a D-dimensional spacetime
- correspond to maximum lattice momenta pµ = ±π

a

in Dirac equation: p̃µ = 1
a

sin(pµa)
infinite

volume

periodic FV

p̃µ

pµ0 π/a
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Types of Lattice Fermions
Introduce O(aN ) effective terms into fermion action to address problem of doublers

Most common listed below, but many more not listed:

I Staggered – keep doublers (“tastes”) and chiral symmetry
- Diagonalize action: 4-spinors → 4× 1-spinors, drop ×3
- Spin/taste components spread out over unit hypercubes

I Wilson – break chiral symmetry with additional mass term
- add term ar∂2 to action =⇒ amq(p) = amq,0 + 2

a
sin pµa2

I Domain Wall – isolate chirality in extra 5th dimension
- uses Wilson term to remove doublers
- chiral symmetry breaking ∝ e−αL5

ψL ψR

symmetry breaking L5“Universality”: no matter the action,
must reproduce physical world in continuum limit

Each collaboration typically has a favorite action, different actions are nontrivial consistency checks
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Uncertainties in LQCD
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LQCD Statistics
Statistical uncertainties obtained from sampling on gauge configurations

Can get a rough idea of signal quality based on Lepage scaling:

Signal Noise2〈
O

〉
σ2

O =
〈

|O|2
〉

−
∣∣〈O

〉∣∣2
≤

〈
|O|2

〉
〈 〉 〈∣∣ ∣∣2〉

=
〈 〉

∼ e−Mnt ∼ e−3Mπt

Example baryon correlator 〈O〉 = 〈[q(t)]3[q(0)]3〉 =⇒ S/N ∼ exp
[

− (MN − 3
2Mπ)t

]
Samples are usually autocorrelated because of Markov Chain gauge ensemble generation
Correlation functions on the same ensemble also highly correlated:

I different Euclidean times with same correlation function
I correlation functions computed on same configurations with different operators
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Approaching the “Physical Point”

At a minimum, a complete error budget includes:

I a → 0 Continuum extrapolation
I L → ∞ Finite volume (FV) extrapolation
I Mπ → Mπ,phys “Chiral” extra(inter)polation

Every point in extrapolation is a separate ensemble
=⇒ very expensive!

Incomplete results will get reported,
updated later with more ensembles

Always compare to extrapolated values or use due caution!

[Nature 558 (2018)]

Mπ interpolation

Continuum extrapolation

FV correction

Physical result
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Finite Volume Effects

π

Finite volume effects for hadrons via virtual particle exchange
with themselves through periodic boundary

Like time dependence, falls off ∝ exp[−EL]

For typical ensembles, MπL ∼ 4 =⇒ only π nonnegligible

No analogue using QFT definition of asymptotic separation
particles in multiparticle states cannot be isolated

Presence of other nearby particles has large effects on spectrum

Strong spectrum modifications ∝ Lα
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Resonances in Finite Volume

[Nuc.Phys.B 364]

Mρ

Mπ
= 3.0

ρ Unstable Mρ

Mπ
= 2.2

ρ Stable

ππ

ρ+ ππ?

ππ ∼ Lα

ρ ∼ e−MπL
ρ

π

π

Toy example above: ππ scattering with ρ state
I (Left) Resonances, avoided level crossings: FV corrections ∝ Lα

I (Right) Single-particle states: FV corrections ∝ exp{−MπL}

=⇒ Particle count is not a good quantum number
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Continuum Limit
Reminder of the link definition: Uµ(x) = e

−ig
∫ x+aµ̂

x
Aµ(x′)dx′

=

Define a plaquette: Pµν(x) = 1
3 Re

[
Tr

[
Uµ(x)Uν(x+ aµ̂)U†

µ(x+ aν̂)U†
ν (x)

]]
= 1

3 Re
[

Tr
[
e

−ig
∮
�
A·dx′]]

= 1
3 Re

[
Tr

[ ]]

Taylor expand: Pµν(x) = 1
3 Re

[
Tr

[
1 − ig

( ∮
�
A · dx′

)
− 1

2g
2
( ∮

�
A · dx′

)2
+ ...

]]
Stokes’ theorem

∮
�
A · dx′ =

∫ x+aµ̂
x

∫ x+aν̂
x

dx′
µdx

′
ν

(
∂µAν(x′) − ∂νAµ(x′)

)
= a2Fµν(x̄) + a4

24

(
D2
µ +D2

ν

)
Fµν(x̄) + ... x̄ = x+ a

2

(
µ̂+ ν̂

)
The Wilson action: SW = β

∑
x,µ>ν

(
1 − Pµν(x)

)
=

∫
d4x

∑
µν

{
1
2 TrF 2

µν + a2
24 TrFµν

(
D2
µ +D2

ν

)
Fµν + ...

}
Lattice action same as physical continuum action up to order a2 corrections...

[Lepage Proceedings]
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Continuum Limit
Reminder of the link definition: Uµ(x) = e
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3 Re

[
Tr

[
Uµ(x)Uν(x+ aµ̂)U†

µ(x+ aν̂)U†
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3 Re
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Tr
[
e

−ig
∮
�
A·dx′]]
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3 Re
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Tr

[ ]]
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3 Re
[

Tr
[
1 − ig

( ∮
�
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( ∮

�
A · dx′

)2
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=
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(
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µ +D2

ν

)
Fµν + ...

}
Lattice action same as physical continuum action up to order a2 corrections...

[Lepage Proceedings]
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Continuum Limit Universality

[PoS LATTICE2022 (2023)]

Different actions can have different approach a → 0

Usually O(a2), some improved to e.g. O(a2αs)
=⇒ additional terms added to action

All actions should give same result in continuum
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Chiral Extra(Inter)polation

“Why is extrapolation in masses needed at all? Just compute directly at physical masses.”

103 configs
a = 0.1 fm
L = 3 fm

∝ L5m−3a−7

∝ L5m−1a−6

[I.Plasencia]

There was a time when we couldn’t
(the “Berlin Wall”) [A. Ukawa (2002)]

Cheaper to simulate at large Mπ , then extrapolate
as long as extrapolation is controlled

Physical Mπ ensembles relatively new (10 years)

Most modern computations include ≥ 1 physical Mπ ensemble
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Chiral Perturbation Theory (χPT)
Build effective theory, treat hadrons as degrees of freedom
Lagrangian constructed assuming chiral symmetry as a guiding principle

(1)

Some uses:

1. get parametric dependence of LQCD results on Mπ , FV corrections
use to understand extrapolation to physical!

2. understand hadronic mechanisms driving physics behavior

3. applying LQCD results to make predictions of other observables

LQCD calc extract masses,
matrix elements Match to χPT Predict with χPT
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Example — χPT and Nπ in Excited States

π(q)

N(0) N(q)

π(−q)
q

q

−q

q

✏plat
A (Q2, t) and ✏plat
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FIG. 4: Results for ✏plat
A (Q2, t) (dots) and ✏plat

P (Q2, t) (diamonds) for a source sink separation t = 2 fm and

momentum transfers below 0.25 (GeV)
2
. The discrete values for the latter are determined by the size of the

spatial volume given in terms of M⇡L = 3 (purple), 4 (blue), 5 (black) and 6 (red).

according to

Gplat
A (Q2, t) ⌘ min

0<t0<t
Ge↵

A (Q2, t, t0) , (5.1)

G̃plat
P (Q2, t) ⌘ max

0<t0<t
G̃e↵

P (Q2, t, t0) . (5.2)

These are functions of the momentum transfer and t. Naively one expects the operator has to be
located closely to the middle between source an sink, i.e. t0 ⇡ t/2. At least for small momentum
transfer that are accessible with ChPT we will find this expectation to be true, see below. In
practice, the midpoint estimates

Gmid
A (Q2, t) ⌘ Ge↵

A (Q2, t, t0 = t/2) , (5.3)

G̃mid
P (Q2, t) ⌘ G̃e↵

P (Q2, t, t0 = t/2) . (5.4)

are close to the plateau estimates and work equally well.
As a measure for the N⇡-state contribution we introduce the relative deviation of the plateau

estimates from the true form factors,

✏plat
A (Q2, t) ⌘ Gplat

A (Q2, t)
GA(Q2)

� 1 , ✏plat
P (Q2, t) ⌘ G̃plat

P (Q2, t)
G̃P(Q2)

� 1 (5.5)

and analogously for the midpoint estimates. Figure 4 shows ✏plat
A,P for a source sink separation of t = 2

fm and small momentum transfers below 0.25 GeV2. Without the N⇡ contribution �Gplat
A,P would

be equal to 0. Any deviation from this value is the N⇡ state contamination in percent. Plotted
are the results for the lowest discrete momentum transfers allowed by various spatial volumes with
M⇡L values between 3 and 6.

In case of the axial form factor (dots) we can read o↵ that the plateau estimate overestimates
GA(Q2) by about 5%, essentially independent of Q2. We also reproduce the result for vanishing

momentum transfer found in [9]. In contrast, G̃plat
P (Q2) underestimates the induced pseudo scalar

15

[Phys.Rev.D 99 (2019)]

Axial

Induced
Pseudoscalar

Excited state uncertainties are another critical systematic
(Opinion: most challenging in nucleon computations)

χPT: Contamination in FA(Q2) primarily from enhanced Nπ,
mostly from induced pseudoscalar

Empirical: two Nπ states dominate contamination at nonzero Q2
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∆M1 ∆E1 ∆MA4
1

∆EA4
1

∆M : N(n) + π(−n) ∆E : N(0) + π(n)

NOTE: expect only approx
agreement between data/curves

[Phys.Rev.Lett.124(2020)]
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Future Prospects
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State of the Art

Systems with exaflop peak performance

[P. Boyle]

[L. Lellouch]
963 × 144 =⇒ > 109 sites
8.5 GB/config, 154 GB/propagator
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Energy Regimes
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LQCD Target Calculations

NN

νµ

NN ′

µ−

N

N

N

N

N

π
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π

ddu
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X
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X
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n
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(incomplete list!)
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Roadmap To Nuclear

∆

N

νµ

N′

π

µ−

N

νµ

N

µ−

N N

A

νµ

X

µ−
νµ µ−

π

νµ µ− νµ µ− νµ µ−

LQCD Nuclear EFT

Ab initio Nuclear Many-body

Neutrino Monte Carlo
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QE Axial FF - N� Interpolating Operators

[priv.comm. Lorenzo Barca]

Q2 = 0 Q2 6= 0

Excited state contamination largely dominated by N� states

Empirical: need N� -like operators (must include qqq� q�q operators) to isolate states

[Phys.Rev.D 92 (2015)]

Several groups working on better multiparticle analyses,

more expensive than only qqq operators
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