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Figure 1: Experimental efforts in the worldwide quest for the understanding of neutrino-oscillations and
neutrino-nucleus scattering, current: T2K, NOvA, MINERvA, MicroBooNE and future: Hyper-K, DUNE.
(Bottom left) produced neutrino flux predictions; (bottom center) flux-averaged probability of non-oscillation
as a function of the propagation distance; (bottom right) total charged current neutrino-nucleon cross section,
where "QEL" denotes quasielastic scattering, "RES"—single-pion production, and "DIS"—community slang
for both shallow- and deep-inelastic scattering.

P(νµ → νe) ≃ sin2(2θ) sin2
(
1.27∆m2L

Eν

)

oscillation amplitude frequency

ACP =
P(νµ→νe)−P(ν̄µ→ν̄e)
P(νµ→νe)+P(ν̄µ→ν̄e)

asymmetry oscillation ratio
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Outline

Lecture 1. the general framework of the nuclear mean-field model

(1) Independent-particle model

(2) Nucleon in a central potential

(3) Mean-field nuclear potential

Lecture 2. one- and two-nucleon knock-out in lepton-nucleus scattering
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Let’s model a nucleus
Basic property of the nucleus–binding

M(Z,N) = ZMp +NMn − B

Nuclear packing fraction:
→ for nuclei: 0.07 < NFP < 0.42
→ for hard spheres: ≈ 0.74
→ for liquid argon: ≈ 0.032

Nucleus is like a dense quantum liquid

3] Binding Energy of Nuclei 299

nuclides (M22, B4). Figure 3.1 therefore indicates only the smoothed

general trend of B/A for 30 < A < 240, without explicit representa-
tion of significant fine variations which undoubtedly will be quantified
later. Even so, this region already shows several significant features.

There is a broad maximum near A ~ 60 (Fe, Ni, Co) where B/A ~ 8.7

Mev/nucleon. Above this region the mnan B/A values fall mono-
tonically. Note also that B/A declines among the heavy emitters of a

rays to a low of 7.3 Mev/nucleon for Ur \ This small value of B/A
approaches, but does not equal, the B/A = 7.07 Mev/nucleon exhibited

in the a particle itself. Nuclides having A appreciably larger than 238,

7

g
_O>

I'^
.E 5

4 B 12 16 20 24 30 150 180 210 24060 $0 120

Mass number A
Fig. 3.1 Average binding energy B/A in Mev per nucleon for the naturally occurring
nuelides (and BeH

), as a function of mass number A. Note the change of magnifi-
cation in the A scale at .4 = 30. The Pauli four-shells in the lightest nuclei are

evident. For A > 16, B/A is roughly constant; hence, to a first approximation,
B is proportional to A.

and correspondingly smaller values of B/A, could be expected to be

energetically unstable against total disruption into a particles. Thus
there is a natural limitation on the maximum achievable value of A (and
Z), even in the absence of the boundary set by spontaneous two-body
fission, which is discussed in Chap. 1 1 .

'b. Saturation of Nuclear Forces. If each nucleon exerted the same
attractive force on all other nucleons in its nucleus, then there would be

A(A l)/2 attractive bonds. For A 1, the binding energy would
then increase at least as rapidly as A 2

,
even assuming that in larger nuclei

the nucleons are not drawn closer together, where they could experience
still stronger forces. Experimentally, this square law is distinctly not

R. Evans, The Atomic Nucleus (1955)
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Liquid-drop model

Bethe-Weiszäcker mass formula

B = aVA → volume
− aSA

2/3 → surface

− aC
Z2

A1/3
→ Coulomb

− aA
(N− Z)2

A
→ asymmetry

± ∆ → pairing

382 The Atomic Nucleus [CH. 11

Table 3.2 also gives the observed and theoretical B/A for a few

lighter and heavier nuclides. Note that over the entire range of A
from S33 to Bk24B

,
the semiempirical mass formula, with the coefficients

given in Table 3.2, predicts average binding energies B/A which are

everywhere within 1 per cent of the observed values. This is a remark-

able achievement for so simple a theory. Equation (3.15) can therefore

serve as a smoothed base line against which local variations in M and

B/A can be compared. In this way, discontinuities due to the shell

structure of nuclei become prominently displayed, as we shall see shortly.

Evaluation of Components of the Total Binding Energy. Table 3.2

also lists the separate contributions of the four energy terms, volume,

coulomb, surface, and asymmetry, for odd-A nuclides. The pairing

30 60 27090 120 150 ISO
Mass number A

Fig. 3.6 Summary of the scmiempirical liquid-drop-model treatment of the average

binding-energy curve from Fig. 3.1 of Chap. 9. Note how the decrease in surface

energy and the increase in coulomb energy conspire to produce the maximum observed

in B/A at A ~ 00. For these curves, the constants used in the semiempirical mass

formula are given in the last line of Table 3.3.

energy, for even-A nuclides, is best determined from Fig. 3.4 and added
in as an empirical local value.

Figure 3.5 shows the separate contributions of each of the four energy
terms to the average binding energy per nucleon B/A, for all A. The
initial rise of B/A with A, which we first noted empirically in Fig. 3.1

of Chap. 9, is seen to be attributable mainly to the decreasing importance
of surface energy as A increases. At still larger A, the importance of the

disruptive coulomb energy becomes dominant, causing a maximum in

B/A at A ~ 60 and a subsequent decline in B/A at larger A. Through-
out the entire range of A above A ~ 40 the semiempirical mass formula

matches the observed binding energies within about 1 per cent.

Summary of Evaluations of Energy Coefficients. Table 3.3 collects the

evaluations of the energy coefficients of Eq. (3.15). For comparison andKajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 7 / 42



Independent-particle model
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Basic assumptions

Elementary model of nuclear physics:

◦ nonrelativistic,

◦ nucleons are explicit degrees of freedom,

◦ described by the following Hamiltonian

Ĥ =

A∑
i

T̂i +

A∑
i<j

V̂ij +

A∑
i<j<k

V̂ijk + ...

◦ two-body potential obtained from
→ phenomenology,
→ one-boson exchange models,
→ using χEFT;

◦ three-body potential obtained from
→ phenomenology,
→ using χEFT;
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Nucleon-nucleon interaction K. A. Olive et al. (Particle Data Group),
Chin.Phys. C 38 (2014), 090001
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Two-body potentials (e.g. Argonne ν18) use angular momentum and isospin operators of the form

{1, L · S, σ1 · σ2, S12, L2, (L · S)2, L2σ1 · σ2}, {1, τ1 · τ2}
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Nucleon-nucleon interaction
Nuclear force:

◦ Short range

◦ Repulsive core

◦ Charge symmetry and independence

◦ Spin dependence

Isospin symmetry:

◦ isospin T = 1/2

→ neutron Tz = −1/2
→ proton Tz = +1/2
→ nucleus Tz = 1/2(Z−N)

Approximately conserved in nuclei

◦ nn, pp: T = 1

→ must have S = 0
→ marginally unbound

◦ np: T = 0, 1

→ S = 0 is unbound
→ S = 1 is bound with

B = 2.2MeV
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Nucleon-nucleon interaction

46 R. B.WIRINGA, V. G. J. STOKS, AND R. SCHIAVILLA 51

IV. PROJECTION INTO OPERATOR FORMAT

We can project the strong interaction potential given
above &om S,T, T, states into an operator format with
18 terms

vi~ = ) vp(re )O,~ . (25)
p=1,18

Here the first 14 operators are the same charge-
independent ones used in the Argonne v14 potential and
are given by

O,",='" = &,T;.T, , ~.--~&, (~'-~')(T' T~) ~'~ ~V(T' T~). I.S I.S(T'.T~)
L2, L (T;.T~) LI(cr, o~)IL (cr, cr~)(T, T~)I (L S), (L.S) (T; T~) . (26)

These 14 components are denoted by the abbreviations
c, r, o, o r, t, tr, l s, Isr, l2, l2r, l2o, l2o.r, ls2, and l s2r.
The four additional operators break charge independence
and are given by

0,". . ' = Ta, a (cr; cr~)Ti, a S;;Ta, a (Tz, +T )zI(27)

1 1VtT 0 [2 (Vl1 pp + Vl 1,nn) Vl 1)lnp]

Finally, the charge-asymmetric terms are given by

(34)

The charge-dependent tensor term comes only from the
spin-triplet channel, and reads

c CI CD~ CA/VS1,~~ = Vsl + Vsl &ij + Vsl (uzi + &zj )

For the charge-independent potential this implies
CI 1( cSl $( Sl,pp + Sl,nn + Sl,np)

We then project

ls(9"11 + 3"lo + 3vol + "oo) I
1 CI CI CI CI

1 CI CI CI CI
ls (3v11 3vlo + vol Voo ) I

CI CI CI CI
ls (3v11 + vlo 3vo1 voo ) I

1r CI CI CI CI~
16( 11 10 01 + 00) )

(28)

(3Oa)

(3Ob)

(30c)
(30d)

where of course v10 ——v10 p and v00 ——v00 „.A similarCI c CI c

set of projections is used for the I parts of the interac-
tion. For the tensor, spin-orbit, and quadratic spin-orbit
pieces, which exist only in S = 1 channels, the projec-
tions are (x = t, ts, ts2)

where T;z ——3r;r~~ —v, .r~ is the isotensor operator,
defined analogous to the S;~ operator. These terms are
abbreviated as T, oT, tT, and rz. The T, o.T, and tT
operators are charge dependent and are "class II" forces,
while the rz operator is charge asymmetric and is a "class
III" force [25].
The operator potential terms, vp, can be obtained &om

the channel potentials, vsT ~~, by a simple set of projec-
tions. We first introduce charge splitting for the central
T = 1 states,

CA 1( c c
S1 4 k Sl,pp Sl,nn (35)

which leads to
1 CA CAv~z = 4(3"11 + "ol ) I

1 g CA CAq~«4k 11 01 J ~

(36a)
(36b)

As discussed in the previous section, we fix v01 to repro-
duce the singlet nn scattering length by adjusting the pa-
rameter P01 to be slightly difFerent from P01 „„.We are
unaware of any nn data that would allow us to fix v11,
but there have been numerous theoretical predictions for
charge-symmetry breaking based on p-~ and ~-g-g' mix-
ing. Such models suggest that v11 should be somewhat
larger than vl, but with a similar shape [36]. In the
present work we make the simple assumption v11 = voc1A

which implies there is no v term. We also neglect
the possibility of a charge-asymmetric tensor term v&

which is why we end up with only one charge-asymmetric

4( 11 + 10)
1 x

11 10

(3ia)
(3ib)

The charge-dependent terms in Eq. (28) are given by

CD 1 1 c C Cvsl = —.[-, (vsl, pp+ vsl...) —vsl, .pl
which can be projected as

(32) -200
0.0

I

0.5
I

1.0
r (fm)

1.5 2.0

VT 4 (3 11 + 01 )1 CD CD

1 CD CD
4 11 01

FIG. 6. Central, isospin, spin, and spin-isospin components
of the potential. The central potential has a peak value of
2031 MeV at r = 0.

R. B.WIRINGA, V. G. J. STOKS, AND R. SCHIAVILLA 51

TABLE X. Static deuteron properties.

(T)
(v )
(v )
(v )
As

rd

q~
Pd,

Experiment
2.224575(9)

0.8781(44)
0.0256(4)'
1.953(3)
0.857406(1)'
0.2859(3)

Argonne vq8
2.224575
19.814
0.018

-21.286
-0.770
0.8850
0.0250
1.967
0.847
0.270
5.76

0.871
0.275

Units
MeV
MeV
MeV
MeV
MeV

1/2

fm
po
fm
Fo

Reference [37].
Reference [38].
'Reference [39].

Reference [40 .
'Reference [41 .
Reference [42].

is displayed. The successive columns give the So phase
shifts for (1) the CI potential with an average nucleon
and average pion mass, (2) with the correct proton mass,
(3) with the correct CD OPE tail (i.e., correct neutral-
pion mass) but the CI core, (4) with both the CD OPE
and core interactions, and (5) with the electromagnetic
potential added. From these it can be seen that the nu-
cleon mass has a relatively small efFect, while the CD
OPE and core terms have relatively large efFects at low
energy, and the core contribution becomes dominant at
higher energies.

V. DEUTERON PROPERTIES

The static deuteron properties are shown in Table X
and compared to experimental values [37—42]. The bind-
ing energy, E~, is fit exactly by construction. The ex-
pectation values for the kinetic energy, T, and for the
EM, OPE, and remaining potentials are also shown. We
note that the OPE potential dominates, while the EM
potential gives a small but non-negligible 18 keV contri-
bution, mostly from the magnetic moment term. The
asymptotic S-state normalization, As, and the D/S ra-
tio, g, are both 1.5 standard deviations from experi-
ment. The deuteron radius, rg, is o8 rather more, which
is a persistent problem with NN potential models. The
magnetic moment, pg, and the quadrupole moment, Q~,
are both underpredicted in impulse approximation; both
have significant relativistic and meson-exchange correc-
tions, as discussed below. (Such corrections ta rd, are
quite small. ) Finally, the D-state percentage is about
5%%uo smaller than that of the older Argonne vq4 model [1]
and almost identical to that of the Paris potential [7].
The S- and D-wave components of the deuteron wave

function are shown in Fig. 11, where they are compare
to those for the older vi4 model. The short-range be-
havior of the wave function components is moderately
different. The A(q2) and B(q ) structure functions and
tensor polarization T2o(q ) obtained with the present in-
teraction model are displayed in Figs. 12—14; the exper-
imental data are from Refs. [24,43—51]. The model for
the isoscalar electromagnetic current operator has been

0.5

04

6
8 03

~3

& 02

Q

0.0
0.0 1.0 2.0

r (fm)
3.0 4.0 5.0

FIG. 11. The deuteron 8- and D-+rave function compo-
nents divided by r.

discussed in detail in Refs. [52,53], here we only summa-
rize its general structure, which consists of one- and two-
body parts. The one-body part has the standard impulse
approximation (IA) form, with inclusion, in the charge
component, of the Darwin-Foldy and spin-orbit relativis-
tic corrections [54]. The two-body charge operators con-
tain contributions that correspond (in an OBE picture)
to those obtained from pion- and vector-meson (p and u)
exchanges. These are obtained from the nonrelativistic
reduction of the Born terms in the corresponding rela-
tivistic photoproduction amplitudes [54]. The two-body
current operators are constructed from the spin-orbit and
quadratic momentum-dependent components of the in-
teraction with the methods developed in Refs. [52,55].
We also consider the two-body charge and current op-
erators associated with the perp mechanism. In partic-
ular, we include in the nonrelativistic reduction of its
current component the next to leading order correction
arising from the tensor coupling of the p meson to the
nucleon [53]. The Hohler parametrization 8.2 [56] is used
for the electromagnetic form factors of the nucleon, while
an u-pole term form factor is included at the perp elec-
tromagnetic vertex.

R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys.Rev. C 51 (1995), 38–51
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Independent-particle model
What do we know so far:

◦ nuclei are made of nucleons,

◦ binding per nucleon is relatively small (≃ 7.5MeV for 12C),

◦ distance between particles larger than the nucleon radius (≃ 1− 2 fm),

Probability for a particle to propagate over a distance xwith no interactions is

P(x) =
1

λ
exp(−x/λ)

where λ = (ρσ)−1 is the mean free path, while ρ is target density and σ is interaction cross section

For nucleons inside nuclei: λ̃≪ d < λ < R

where λ̃ is the de Broglie wavelength, d is the distance between targets, and R is the nuclear radius

→ nucleus can be modeled as a system of independent, quasifree nucleons
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Independent-particle model

General characteristics:

◦ discrete energy levels of a particle in a
potential well

Ei = Ti −U(ri) < 0,

→ nuclear binding

B =

A∑
i

(Ti −U(ri)),

→ separation energy
Es = Tmax −U(r),

◦ Coulomb barrier for protons

U(r) [MeV]

r [fm]

1 2 3 4 5

−50
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Fermi gas model
Let’s assume a gas of nucleons:

◦ nucleons are fermions,
→ wave functions are antisymmetric

ψ(..., xa, ..., xb, ...) = −ψ(..., xb, ..., xa, ...)

◦ degeneracy pressure from Pauli principle,

◦ no interactions between nucleons,

◦ everything immersed in an infinite
potential well

− h2

2m
∇2ψ(x, y, z) = Eψ(x, y, z)

→ stationary Schrödinger equation

U(x) [MeV]

x [fm]

1 2 3 4 5

−35

EF

Es
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Infinitely deep potential well
The wave functions:

Ψnx,ny,nz(x, y, z) = ψnx(x)ψny(y)ψnz(z) = sin(kxx) sin(kyy) sin(kzz) (1)

The energies:
Enx,ny,nz =

 h2p2x
2m

+
 h2p2y

2m
+

 h2p2z
2m

=
 h2π2

2m

(
n2
x

L2x
+
n2
y

L2y
+
n2
z

L2z

)
(2)

The number of states up to the Fermi momentum:

p2x + p2y + p2z < p
2
F =⇒ n2

x + n2
y + n2

z <
p2FL

2

π2 h2
(3)

We calculate the number of occupied of states:

n = 2
1

8

4

3
π

(
pFL

π h

)3

=
1

3
π
( pF
π h

)3
V =

1

3
π
( pF
π h

)3 4
3
πr3A (4)

(we took only 1/8 of the total sphere (nx > 0, ny > 0, nz > 0), but with 2 spin states)

Finally, using rA = r0A
1/3, we obtain the Fermi momenta for protons and neutrons:

pF =
 h

r0

3

√
9π

4

3

√
Z

A
and pF =

 h

r0

3

√
9π

4

3

√
A− Z

A
(5)

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 16 / 42



Fermi gas model... why not?

◦ analytical model for efficient computations,

◦ nucleon transition from below the Fermi sea to above

θ(kF − |⃗k|) → θ(|⃗k+ q⃗|− kF)

|⃗k|2/2M− V → (|⃗k+ q⃗|2 +M2)
1/2

→ final nucleon is a plane wave;

◦ captures general features of quasielastic peak
→ Fermi momentum controls the spread,
→ average interaction energy controls the shift;

(ϵ̄ = ⟨E⟩ ? ϵ̄ ̸= V)

E. J. Moniz et al., Phys.Rev.Lett. 26 (1971) 445-448

VOI,UME 26, NUMBER 8 PHYSICAL REVIEW LKTTERS 22 FEBRUARY 1971

sents the first investigation of the systematics
of quasielastic scattering from a whole series of
nuclei. The cross sections d'o/dQde were mea-
sured for fixed electron incident energy (500
MeV) and scattering angle (60 ) on nine target
nuclei ranging in atomic number from lithium to
lead. The radiatively corrected spectra are in-
terpreted in terms of the nuclear Fermi gas
model of Moniz. ' This model retains the full
relativistic nucleon electromagnetic vertex and
provides a good description of the data. ' The
analysis is used to extract the nuclear Fermi
momentum' and average nucleon interaction en-
ergy as a function of atomic number.
The experiment was performed on the Stanford

Mark III linear electron accelerator. Except for
a change in the detector discriminator settings
needed to improve pion rejection, the experi-
mental apparatus and techniques used are iden-
tical to those of several recent elastic-scatter-
ing experiments and are discussed elsewhere. '
For each nuclear target, positron and positive-
pion spectra were measured by reversing the
spectrometer field. These counts, which never
constituted more than 3/o of the electron spec-
trum for electron energy loss less than 300 MeV,
were subtracted from the data.
The radiative correction procedures followed

were basically those of Mo and Tsai, which are
believed good to better than 3%. Their expres-
sions were modified to include effects arising
from multiple-photon emission in the target, as
worked out by Miller. ' In making radiative cor-
rections to inelastic data, one must in principle
know the cross section (at the same angle) for
all lower incident energies down to the scattered-
electron energy under consideration. In this ex-
periment, we measured the cross sections at an
angle of 60 for incident energies of 500, 440,
380, and 320 MeV and for secondary electron
energies from the elastic peak down to at least
260 MeV. For incident energies not actually
measured, we interpolated from the measured
spectra along lines of constant excitation energy. "
This interpolation procedure introduces an uncer-
tainty of less than 1% in the final 500-MeV data
points. Also, since the most uncertain part of
the radiative correction formulas is that which
increases with target thickness, we used very
thin targets of less than 0.01 radiation lengths
in all cases. The target-thickness part of the
radiative correction was never more than 20%
of the total correction to any data point, which
in turn was never more than 30% of the original

(~)
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= 25 MeV
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Fig. 1. Cross sections d o/dQde versus electron
energy loss =&&-&2 for inelastic scattering of 500-
MeV electrons at 60 from (a) carbon, (b) nickel, and
lc) lead. Solid lines are the results of the Fermi-gas
calculation with the nuclear parameters indicated on
the figure.

number of counts. In Fig. 1 we present the cross
sections, after radiative correction, for carbon,
nickel, and lead targets.
We have compared our data with the Fermi-

gas model of Moniz, ' treating the nuclear Fermi
momentum, kF, ' and the average nucleon inter-
action energy, e, as variable parameters. The
width of the quasielastic cross section is directly
proportional to kF, while e is determined from
the location of the peak. More precisely, the
energy-conserving 5 function involved in comput-
ing the cross section Isee Eq. (7) of Ref. 6] is
written 6(&o+ (k'/2M —e)-(k+ q)'/2M), where + is
the energy loss and q is the momentum transfer.
The constant e shifts the peak position and is
interpreted as the average nucleon interaction
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...maybe better not

30

Fermi gas model

Barreau et al., NPA 402, 515 (1983)

What happens at kinematics other than 500 MeV, 60 deg?   

Artur Ankowski R. Whitney et al., Phys.Rev. C 9 (1974), 2230
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Fermi gas model

◦ general assumptions are unclear
→ taken limits are inconsistent;

◦ fails to predict proper energy levels
→ unreliable for exclusive processes;

◦ lack of nucleon-nucleon interactions
→ overestimates the inclusive data;

◦ local Fermi gas is more robust
→ but makes even less sense; J. Mougey, Nucl.Phys. A 335 (1980) 35
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Problem 1.

Let’s take the 12C nucleus with kF = 221MeV/c and ϵ̄ = 25MeV.

(1) What are the general properties of this Fermi gas (EF,V ,Es)?
→ what is the average nucleon energy?

(2) How does the spectral function of the Fermi gas model look like?
→ what is the energy-momentum relation?

(3) How does the spectral function of a local Fermi gas looks like?
→ how can we parametrize kF as a function of density ρ(r)?

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 21 / 42



Nuclear density and nucleon distribution for Carbon
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Nucleon in a central potential
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Nucleon in a central potential

Let’s consider a nucleon in a central
nuclear potential

→ V = V(r) only

→ angular momentum is conserved

◦ harmonic oscillator

VHO(r) =
1

2
mω2r2 − V1

◦ Woods-Saxon potential

VWS(r) = −V0
1

1+ exp((r− R)/a)

with V0 ≃ 50MeV and a ≃ 0.60

-1- 

Nuclear Physics 
Practice 10 

Remark: A brief note about the Woods-Saxon potential 

The more realistic potential used in the shell-model is the Woods-Saxon potential (which is an 
approximation to the potential obtained with the Hartree-Fock method): 

aRrWS
V

rV )/-(
0

e1
)(




  

where R is the nuclear radius and a is the surface diffuseness. Typical values for the parameters 
are: 

MeV-3351fm,67.0, 0
3/1

0 A
ZNVaArR   

The plus sign in V0 is for neutrons and the minus is for protons. The relation between the Woods-
Saxon potential and the equivalent harmonic oscillator potential can be seen in the following 
figure: 

 

The corrections compared to the harmonic oscillator potential are 

a) repulsive effect for short and large distances → push up small l orbits 
b) attractive effect for intermediate → push down large l orbits 

However, the Schrödinger-equation cannot be solved analitically for the WS-potential, only 
numerical solutions are provided. The equivalent harmonic oscillator potential reproduces the 
wave functions of the Woods–Saxon potential quite well near the bottom of the wells, but when 
approaching zero energy, the differences grow. Near zero energy the Woods–Saxon wave 
functions have a long tail extending far beyond the nuclear radius R, whereas the harmonic 
oscillator wave functions decrease sharply beyond the potential wall. 
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Nucleon in a central potential
The Schrödinger equation:

−
 h2

2m
∇2ψ− V(r)ψ = Eψ (1)

→ in carthesian coordinates:
∇2 =

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(2)

→ in spherical coordinates:

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂2ϕ

)
(3)

In spherical coordinates we separate variables:

ψ(r, θ, ϕ) = R(r)Y(θ,ϕ) (4)

We obtain two equations:
1

R

d

dr

(
r2
dR

dr

)
−
2mr2

 h2
[V(r) − E] = l(l+ 1) (5)

1

Y

{
1

sin θ
∂

∂θ

(
sin θ∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂ϕ2

}
= −l(l+ 1) (6)
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Nucleon in a central potential
Let’s consider the angular part and use Y(θ,ϕ) = Θ(θ)Φ(ϕ):

1

Θ

[
sin θ d

dθ

(
sin θdΘ

dθ

)]
+ l(l+ 1) sin2 θ = m2 (7)

1

Φ

d2Θ

dϕ2
= −m2 (8)

First we solve the latter:
Φ(ϕ) = eimϕ (9)

→ applying the condition Φ(ϕ) = Φ(2π+ ϕ) we must havem = 0,±1,±2, ...

Then, we solve the remaining:
Θ(θ) = APml (cos θ) (10)

→ where Pml (cos θ) are the associate Legendre polynomials, and l = 0, 1, 2, ... form = −l,−l+ 1, ..., l− 1, 2

Y(θ,ϕ) = Θ(θ)Φ(ϕ) are the spherical harmonics:

Y(θ,ϕ) = (−1)m

√
(2l+ 1)

4π

(l−m)!
(l+m)!e

imϕPml (cos θ) (11)
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Nucleon in a central potential

The spherical harmonics are the angular solution to
any central potential problem

The shape of the potential V(r) only affects the radial
part of the wave function

We have:

L2Ylm(θ,ϕ) = l(l+ 1) h2Ylm(θ,ϕ) (12)
LzYlm(θ,ϕ) = m hYlm(θ,ϕ) (13)

Angular momentum is quantized:
→ the allowed values of l are 0, 1, 2, ...
→ sometimes we use the letters s, p, d, f, ...
→ the allowed values ofm are 0,±1, ...,±l
→ the eigenvalues of L2,Lz are l(l+ 1) h2 andm h
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Nucleon in a central potential
Now, let us come back to the radial part:

1

R

d

dr

(
r2
dR

dr

)
−
2mr2

 h2
[V(r) − E] = l(l+ 1) (14)

We introduce R(r) = u(r)/r:

−
 h

2m

d2u(r)

dr2
+

(
l(l+ 1) h2

2mr2
+ V(r)

)
u(r) = Eu(r), (15)

where
u(∞) = 0, u(0) = 0,

∫∞
0

u2(r)dr = 1 (16)

E.g., for the harmonic oscillator of U(r) = 1
2
mω2r2:

uk,l(r) =
(mω

 h

)l/2+1/2

e−
mω
2 h rl+1L

l+1/2
k (

mω
 h
r2) (17)

with energy levels
Ek,l =  hω(2k+ l+ 3/2) =  hω(N+ 3/2) (18)
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Nucleon in a central potential

Harmonic oscillator energy spectrum is degenerate

Energy levels are quantized:
→ major oscillator quantum number: N = 0, 1, 2, ...

→ orbital quantum number: l = N,N− 2, ..., 1, 0

→ radial quantum number: k = (N− l)/2

Magic numbers appear in the spectrum

N =0,1,2, 
I = N, N - 2, ... , 1 or 0 
k = (N -1)/2 

(major oscillator quantum number) , 
(orbital quantum number) , (3.19) 
(radial quantum number) . 

Thus, the spectrum of eigenvalues presents a large number of degenerate (I, k) 
quantum numbers corresponding to a fixed N major oscillator quantum number 
(Fig. 3.9). 

The radial quantum number more often used (de-Shalit, Talmi 1963) is related 
to k via 

n = k + 1 = (N - 1 + 2)/2 , (3.20) 

and expresses the number of nodes of the radial wave function in the interval 
(0, 00) including the node at the origin (excluding the one at infinity). 

We now give a number of interesting properties of the Laguerre polyno-
mials that allow for an elegant calculation of the normalization factor Nk,l 

(Abramowitz, Stegun 1964) 

1000 za e-z Lk(z)Lk,(z) dz = Okk' • r(k + a + 1)3/k! . (3.21) 

We use (3.21) in calculating the norm Nk,l by putting z = 2vr2, r = (z/2v)1/2 
and dr = dz/[2(2vz)1/2] and evaluate the integral 

(0.4) 
&(1.2) /Og (18) 

0.2,4 
-·1d (10) [70] 

(2,0) "2s (2) 

(0,3) _Of (14) 
3 1,3 (1.1) '1p (6) 

[40] 

(0.2) _Od (10) 

2 0,2 (1.0) ... 1s (2) [20] 

Fig. 3.9. Dlustration of the degenerate 
hannonic oscillator energy spectrum up 

10,1) 
-Op 

(6) [8] 
to N = 4. Besides the major shell quan-
tum nwnber (N), the (k, l) degeneracies 
are drawn explicitly. Partial and cwnu-
lative occupation nwnbers are given in 

- Os (2) [2] round and squared brackets, respectively 
N=O 1=0 k=O,I=O 

63 
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Spin-orbit coupling
So far we worked with the following Hamiltonian:

H0 =

A∑
i

(Ti +U(ri)) =

A∑
i

h0(i), E0 =

A∑
i

ϵai
(19)

Let’s introduce a spin-orbit term:
h = h0 + ζ(r)l · s (20)

Nobel Prize in Physics 1963, E.P. Wigner, M. Goeppert Meyer, J.H.D. Jensen

So far, both parallel and antiparallel orientations have the same energies:

⟨nlj,m| h0 |nlj,m⟩ = ϵ(0)nlj, ⟨r, σ|nlj,m⟩ = unl(r)

r

[
Yl(θ,ϕ)⊗ χ1/2(σ)

](j)
m

(21)

We can express the spin-orbit term as ζ(r) 1
2
(j2 − l2 − s2) and obtain ϵnlj = ϵ

(0)
nlj + ∆ϵnlj with

∆ϵnlj = ⟨nlj,m| ζ(r)l · s |nlj,m⟩, ∆ϵnlj =
D

2

[
j(j+ 1) − l(l+ 1) −

3

4

]
(22)

Finally, defining D =
∫
u2
nl(r)ζ(r)dr and ζ(r) = Vlsr

2
0
1
r

∂U(r)
∂r

, we get:

∆ϵnl j=l+1/2 = (D/2) · l, ∆ϵnl j=l−1/2 = −(D/2) · (l+ 1) (23)

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 30 / 42



Spin-orbit coupling

dU(r) 
err 

U(r) 

the (I, !)j coupled single-particle wave function. By using the basis of (3.29) 
the energy correction for the spin-orbital tenn is easily detennined since we can 
express the spin-orbit tenn (r)l . s as 

Thus we obtain 

(0) A 
�nlj = �nlj + , 

with 

L1�nlj = (nlj, ml(r)l . slnlj, m) , 
or 

L1�nlj = [j(j + 1) - l(l + 1) - . 

We define 

D = f dr . 

This gives rise to a spin-orbit splitting of 

D 
L1�nlj=I+1/2 ="2 ·1 

D 
L1�nlj=I-1/2 = -"2(1 + 1) , 

as illustrated in Fig. 3. lOb. 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

A much used fonn of (r) is the derivative of the average U(r) potential and 
is shown for a Woods-Saxon potential in Fig. 3. lOa. One can thus express (r) 
as 

0) 

/%. (1+1) 

----1(----
\ Dh· 1 

=1+% 

b) 

Fig. 3.10. (a) We draw the possible radial fonn for the spin-orbit strength function «r) as detennined 
by the derivative of a Woods-Saxon potential, described by (3.36). This function (r) peaks at the 
nuclear surface. (b) The spin-orbit splitting between j = 1 ± partners, according to (3.35), using 

the factor D, with D == J u!/(r)(r)dr [see (3.34)] 
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K. Heyde, The Nuclear Shell Model (1990)
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Woods-Saxon potential

05 

a 

-0.5 

fD () (fm)-V2 rVl,nlj r 

0.5 

o 

-0.5 

1i 13/2 
1 i 1112 

1h9/2 

15 liz 

1j 1512 
2f 5/2 

3p 1/2 

29 7/2 

3d 5/2 

15 

SOO 2 2 
J?'rdr=1 

o 

20 

00 S 2 2 
J?, r dr = 1 

o 

20 

r(fm) 

r(fm) 

Fig. 3.8. Neutron radial wave functions for A = 208 and Z = 82 Unlj (r) (n = 1,2, ... ) [based on the 
calculations with a Woods-Saxon potential by (Blomqvist 1960)] [taken from (Bohr, Mottelson 1969)] 

62 

→ correct magic numbers: 2, 8, 20, 28, 50, 82, 126, ...

I 

5 d --{f'----

6 9 

12. 

SI % 'Y2 M 
I 

.2 

50 
11 

2. 
2 

20 -------------.-.-.---.-----.----------------------

-{ 
a 

'''-___ _ ------
Proton, 

Fig.3.11. A full single-particle spectrum, including tenns that split both the spin-orbit and angular 
momentum degeneracies in the hannonic oscillator case of Fig. 3.9 (n = 1,2, ... ). A level scheme 
for both protons and neutrons is given [taken from (Klingenberg 1952)] 

2 1 aU(r) 
(r) = v, ... ro· - -a- . (3.36) 

r r 

A full single-particle spectrum, including a term proportional to 12 for splitting 
the remaining degeneracies on (k,l) for given N in addition to the spin-orbit 
interaction, is illustrated in Fig. 3.11. This figure gives a general idea of the 

66 
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Problem 2.

Let’s take the nucleon in a spherical potential well:

dR(r)

dr
+
2

r

dR(r)

dr
+

[
2m
 h

(E− V(r)) −
l(l+ 1)

r2

]
R(r) = 0

(1) What are the radial solutions to this problem?
→ Handbook of Mathemathical Functions..., M. Abramowitz, I. A. Stegun, Eq. 10.1.1

(2) What are the energy levels for nucleons?
→ what are the roots of the solution and their relation to k =  hp?

(3) What is the average nucleon energy as confronted with a Fermi gas?
→ what is the depth of the potential using the same separation energy as before?
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Mean-field nuclear potential

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 34 / 42



Mean-field nuclear picture

V(r12) [MeV]

r12 [fm]
1 2

ρ, σ,
ω, 2π

π

−100

→

U(r) [MeV]

r [fm]

1 2 3 4 5

−50

→ let’s try to use a realistic nucleon-nucleon potential to derive the central nuclear potential
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Mean-field potential
Single-particle radial Schrödinger equation:

(T +U(r))ϕa(r) = ϵaϕa(r) (1)

Nuclear Hamiltonian:
H0 =

A∑
i=1

(Ti +U(ri)) =

A∑
i=1

h0(i), E0 =

A∑
i=1

ϵai
(ri) (2)

Nuclear wave function is a Slater determinant:

Φa1,...,aA
(r1, ..., rA) =

1√
A!

∣∣∣∣∣∣∣

ϕa1
(r1) . . . ϕa1

(rA)
...

. . .
...

ϕaA
(r1) . . . ϕaA

(rA)

∣∣∣∣∣∣∣
(3)

Let’s restrict ourselves to two-body interactions only and evaluate the mean-field potential:

H =

A∑
i=1

Ti +
1

2

A∑
i,j=1

Vij (4)

H =

A∑
i=1

(Ti +U(ri)) +

(
1

2

A∑
i,j=1

Vij −

A∑
i=1

U(ri)

)
= H0 +Hres =

A∑
i=1

h0(i) +Hres, (5)

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 36 / 42



Hartree-Fock methods
Let’s consider a density in terms of the occupied single-particle states:

ρ(r) =
∑
b

ϕ∗
b(r)ϕb(r) (6)

The Hartree potential at a given point generated by the two-body interaction:

UH(r) =
∑
b

∫
ϕ∗

b(r′)V(r, r′)ϕb(r′)dr′ (7)

The Schrödinger equation becomes:

−
 h2

2m
∇2ϕi(r) +

∑
b

∫
ϕ∗

b(r′)V(r, r′)ϕb(r′)dr′ · ϕi(r)

−
∑
b

∫
ϕ∗

b(r′)V(r, r′)ϕb(r)ϕi(r′)dr′ = ϵiϕi(r)
(8)

−
 h2

2m
∇2ϕi(r) +UH(r)ϕi(r) −

∫
UF(r, r′)ϕi(r′)dr′ = ϵiϕi(r) (9)

where the exchange term is driven by the Fock potential:
UF(r) =

∑
b

ϕ∗
b(r′)V(r, r′)ϕb(r) (10)

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 37 / 42



The iterative Hartree-Fock method
→ start with an initial guess for the average field or the wave functions

→ using the nucleon-nucleon potential V(r, r′) solve the equation

−
 h2

2m
∇2ϕi(r) +UH(r)ϕi(r) −

∫
UF(r, r′)ϕi(r′)dr′ = ϵiϕi(r)

→ determine new values of UH(r), UF(r, r′), ϕi(r), ϵi

UH(r') = L J CPb(r)V(r,r')CPb(r)dr. 
bEF 

(3.38) 

We denote by U H(r'), the Hartree tenn neglecting exchange effects, and this tenn 
is used in the case of atoms. Within the atomic nucleus, U H(r') is the direct tenn 
of the potential affecting the nucleon motion in the nucleus. The more correct, 
single-particle SchrOdinger equation for the orbital cp;(r) now becomes 

-;2 L1cp;(r) + L J CPb(r')V(r, r')CPb(r')dr' . cp;(r) 
m bEF 

- L J CPb(r')V(r, r')CPb(r )cp;(r') dr' = CiCP;(r) . 
bEF 

(3.39) 

The second contribution on the left hand side takes into account the antisymmetry 
for two identical nucleons, one moving in the orbital CPb(r'), the other in the 
orbital CPi(r). The product wave function CPb(r')cp;(r) has to be replaced by 
CPb(r')CPi(r) - CPb(r )cp;(r'). 

The above Hartree-Fock equations [since for every CPi(r) an analogous dif-
ferential equation is obtained, all coupling via the potential tenns] can be written 
in shorthand fonn as 

;,,2 J' , , - 2m L1cp;(r) + U H(r )CPi(r) - U F(r, r )CPi(r ) dr = c;CPi(r) , 

with 

U H(r) = L J CPb(r)V(r, r')CPb(r') dr' , 
bEF 

U F(r, r') = L CPb(r')V(r, r')CPb(r) . 
bEF 

(3.40) 

(3.41) 

The iterative Hartree-Fock method now starts from an initial guess of the average 
field, or of the wave functions, starting from the knowledge of V(r, r') to solve 
the coupled equations (3.40) in order to detennine a better value for UH(r) and 
UF(r,r'), the cp;(r) and Ci. One can thus proceed in this way until convergence 
in the above quantities results. Schematically, one has 

(0) U H(F)(r) (1) 
UH(F)(r) 

(2) 
U H(F)(r) 

t /' t /' t /' 
) ) (3.42) 

/0) 
• 

/1) 
• 

/2) 
• 

At the end, a final field UH(r), wave function CPi(r), single-particle energy Ci is 
obtained. It is now possible to prove that with the wave functions so obtained, 
by calculating the energy expectation value 

71 

→ at convergence: the final field UH(r), wave function ϕi(r), and single-particle energy ϵi
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Nucleons in the mean-field potential

W. H. Dickhoff, D. Van Neck, Many-body Theory Exposed! (2005)

→ nucleon lines are dressed according to the Hartree-Fock procedure
Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 39 / 42



Charge densities from the mean-field framework

Pc 
0.1 

SkE2-- SkE4-----

0.1 

5 6 7 , 

90Zr 
01 

005 

7 , 0 

Exp 

4°Ca 

6 7 , 

0.1 

b) 

P nuclea, 
matte, 

9 10 

a) 

"'ea 

6 7 , 

Fig.3.17. (a) Charge densities for the magic nuclei 160. 4Oea, 48Ca. 9OZr• 132Sn and 208Pb. The 
theoretical curves correspond to the effective interactions Sk:E2 and SkE4. respectively (see Chap. 8 
for a detailed discussion on the extended Skynne forces) and are compared with the data. The units 
for f}c are efm-3• with the radius r in fm. (b) Combined nuclear matter densities f}m (fm-3) for 
the above set of doubly-closed shell nuclei. Nuclear matter density f} F (nuclear matter) is given as 
a "measure" for comparison 
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K. Heyde, The Nuclear Shell Model (1990)
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Charge densities from the mean-field framework
"'e CHARGE DENSITY DIFFERENCE 

206pb _205 T1 

THEORY z 0.01 
ItJ 

is ___ EXPERIMENT 

in 'I z I, 
" I, 
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Fig. 3.18. The nuclear density distribution for the least bound proton in 206Pb. The shell·model pre· 
dicts the last (381/2) proton in 206Pb to have a sharp maximum at the centre, as shown at the left·hand 
side. On the right·hand side the nuclear charge density difference (}c eosTI) = (r) 

8 1/2 
is given [taken from (Frois 1983) and Doe 1983)] 

average field (Hres). We shall study the two-particle and three-particle systems 
(identical nucleons) and also address the proton-neutron systems, incorporating 
isospin into the discussion. We also give some attention to the problem of the 
effective nucleon-nucleon force acting in the nuclear medium as compared to the 
free nucleon-nucleon force. In Chap. 8, we shall discuss a fully self-consistent 
version of the shell-model approach and show the state-of-the-art possibilities 
using present day high speed computers. 

3.2 Two-particle Systems: Identical Nucleons 

3.2.1 Two-particle Wavefunctions 

The two-particle angular momentum wave function, following the methods of 
Chap. 1, can be constructed as 

t/J(jI(1)h(2); JM) . (3.46) 

(c.p will always be the notation for a single-particle wave function, t/J and I[t for 
composite wave functions). In what follows we denote with 1 == TI, 0"1, ••• all 
coordinates of particle 1, and it is a notation for all quantum numbers necessary 
to specify the single-particle state in a unique way jl == nl, 11, jl. 

In describing the full Hamiltonian for a nucleus formed by a closed shell 
system described by Ho and two extra identical valence nucleons described by 
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K. Heyde, The Nuclear Shell Model (1990)
Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 41 / 42



Relativistic mean-field

All of this can be also done in a relativistic framework:

◦ Schrödinger equation → Dirac equation,

◦ Wave functions → Dirac spinors,

◦ Spin-orbit term comes for free!

(
Ẽγ0 − p⃗ · γ⃗− M̃

)
ψ = 0

Ẽ = E− V(r)

M̃ =M− S(r)

3

nucleon wave function. Results for electron and
neutrino QE and SPP cross sections are shown and
analyzed in Sect. III. Our conclusions are presented
in Sect. IV.

II. MODELS

We describe QE scattering cross section as:

d5σ

dEfdΩfdΩN
= F pNENkf εf

(2π)5frec
lµνhµν

QE , (1)

with frec =
∣∣∣1 + EN

p2
N EA−1

pN · (pN − q)
∣∣∣. The

factor F and the leptonic tensor lµν , which
depend on the type of interaction (electromagnetic,
charged current, or weak neutral current), were
defined in [30].

For the SPP process, represented in Fig. 1, we
work with the cross section [28]: 1

d8σ

dεfdΩfdEπdΩπdΩN
=F kfεfpNENEπkπ

(2π)8frec

×lµνhµν
SPP (2)

with frec =
∣∣∣1 + EN

EA−1

(
1 + pN ·(kπ−q)

p2
N

)∣∣∣.
More inclusive results, e.g. (e, e′) cross sections,

are obtained by summing in Eqs.1 and 2 over all
occupied shells and integrating over the variables
of the undetected particles.

The hadronic tensor for the scattering off a
nucleon from a given shell is given by

hµν
X =

1

2j + 1

∑

mj,sN

(Jµ
X)†Jν

X , (3)

where X denotes the type of process (QE or
SPP), j the total angular momentum of the bound
nucleon, mj its third component, and sN the
spin projection of the outgoing nucleon. We
average over initial bound states for a given shell
( 1
2j+1

∑
mj

) and sum over final states (
∑

sN
).

1 In Eqs. 1 and 2, the degree of freedom linked to the
excitation energy of the residual system has already been
integrated out. In our shell model, the missing energy
Em, defined as the part of the energy transferred ω that
transforms into internal energy of the residual system,
is a constant value for each shell. This produces an
energy conservation Dirac delta that can be trivially
integrated. We have checked that the replacement of this
delta function by a distribution does not introduce any
significant effect in the inclusive cross sections studied
here.

In coordinate space, the hadronic current Jµ
X

reads

Jµ
X = C

∫

V

dr Ψ
sN

(r,pN ) Oµ
X eiq·rψmj

κ (r) , (4)

with V the nuclear volume and C the coupling con-
stant of the hadronic vertex, defined in Ref. [30].
All along this work, the bound state wave function
ψ

mj
κ (r) is always computed in the same way, i.e.,

within the RMF model [21, 24]. This accounts for
Fermi motion and binding energy in a consistent
way. ΨsN (r,pN ) is the wave function of the outgo-
ing nucleon which has asymptotic momentum pN

and spin projection sN . In Fig. 2 we represent the
vector and scalar RMF potentials used in our cal-
culations. Notice that the Coulomb potential that
affects the nucleons is included in our calculations
but not in the figure.
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FIG. 2: RMF vector and scalar potentials as a
function of the position r in the 12C nucleus.

The transition between the initial and the final
state is given by the relativistic operator Oµ

X . For
QE scattering we use the usual CC2 operator (see
e.g. Ref. [31]). For SPP we use the operator
described in [30], that contains the delta, D13, S11
and P11 resonances, and background terms (first-
order contributions of the χPT Lagrangian for
the pion-nucleon system [32]). At large invariant
mass (W ), the background terms are replaced by a
Regge inspired operator that provides the correct
W behavior of the amplitude [30].

The goal of this work is to illustrate how the
interaction between the outgoing nucleon and the
residual nucleus affects the predicted QE and
SPP cross sections. For that, we present results
from several approaches corresponding to different
treatments of the final state nucleon ΨsN (r,pN ).
These are described in what follows.

A. RPWIA model

The outgoing nucleon is a relativistic plane wave.
A well-known problem of this model, when the
initial nucleus is described by any realistic nuclear
model beyond the free Fermi gas, is that in this
approach the orthogonality between initial and
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