One- and two-nucleon knock-out in neutrino-nucleus scattering:
Nuclear mean-field approaches

Kajetan Niewczas
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Outline

Lecture 1. the general framework of the nuclear mean-field model

(1) Independent-particle model
(2) Nucleon in a central potential

(3) Mean-field nuclear potential

Lecture 2. one- and two-nucleon knock-out in lepton-nucleus scattering
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Let’s model a nucleus

Basic property of the nucleus-binding 5 P i e
M(Z,N) =ZM, + NM,, — B _—
7
Nuclear packing fraction: 8
— for nuclei: 0.07 < NFP < 0.42 <°
— for hard spheres: ~ 0.74 <
— for liquid argon: ~ 0.032 T
Nucleus is like a dense quantum liquid 3
2 T w0 e w0 10 10 18z o

Mass number A
Fig. 8.1 Average binding energy B/ A in Mev per nucleon for the naturally occurring
nuclides (and Be*), as a function of mass number A. Note the change of magnifi-
cation in the A4 scale at 4 = 30. The Pauli four-shells in the lightest nuclei are
evident. For A > 16, B/A is roughly constant; hence, to a first approximation,

B is proportional to A.

Packing fraction ~0.012

PhD, UGent 2017 R. Evans, The Atomic Nucleus (1955)
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Liquid-drop model

Bethe-Weiszicker mass formula

B=avA —  volume
—asA’/? — surface
ZZ
—ac AT Coulomb
(N—2)?
— aa A — asymmetry
A — pairing

Volume

/ urlsce ene

RN _--..,.ullll/ll//,’,//////////////
Asymmetry energy

Average binding energy
B/A in Mev/nucleon
@

d' s]l M’Picu“ llﬂ P('“ Bkll&
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Mass number A
Fig. 8.6 S y of the ical liquid-drop-model treatment of the average

binding-energy curve from Fig. 3.1 of Chap. 9. Note how the decrease in surface
energy and the i in coulomb energy pire to prod the observed
in B/A at A ~80. For these curves, the constants used in the semiempirical mass
formula are given in the last line of Table 3.3.

Q

Coulomb Asymmetry Pairing
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Independent-particle model
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Basic assumptions

Elementary model of nuclear physics:
o nonrelativistic,
o nucleons are explicit degrees of freedom,
o described by the following Hamiltonian

A A A
HZZﬂ"‘ZVij"‘ Z \A/ijk-i-...
i<j i<j<k

i

o two-body potential obtained from o three-body potential obtained from
— phenomenology, — phenomenology,
— one-boson exchange models, — using xEFT;

— using xEFT;
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Nucleon-nucleon interaction
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K. A. Olive et al. (Particle Data Group),
Chin.Phys. C 38 (2014), 090001
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Two-body potentials (e.g. Argonne v;g) use angular momentum and isospin operators of the form

{1,L-S,01-02,512,L%,(L-S)?,L?07 - 02}, {1,771 72}
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Nucleon-nucleon interaction
Nuclear force:

o Short range

o Repulsive core

o Charge symmetry and independence

ﬂgm

o Spin dependence

[e]

nn,pp: T =1

— musthave S =0
— marginally unbound

np: T=0,1

— S = 0is unbound
— S = 11is bound with
B =2.2MeV

[e]

Deuteron

Isospin symmetry:
o isospin T =1/2

— neutron T, =—1/2
— proton T, =+41/2
— nucleus T, =1/2(Z —N)

Approximately conserved in nuclei

Mg,...,,

by
s

Attractive Repulsive

Attractive

Repulsive

Tensor foree

Flgu.re 14.10: The tensor force in the deuteron is attractive
in the cigar-shaped configuration and repu]swe ln the d:sk-
shaped one. Two bar
of a tensor force.

provide a cl
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Nucleon-nucleon interaction
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FIG. 6. Central, isospin, spin, and spin-isospin components FIG. 11. The deuteron S- and D-wave function compo-

of the potential. The central potential has a peak value of nents divided by r.
2031 MeV at r = 0.

R. B. Wiringa, V. G. ]. Stoks, and R. Schiavilla, Phys.Rev. C 51 (1995), 38-51
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Independent-particle model
What do we know so far:
o nuclei are made of nucleons,
o binding per nucleon is relatively small (~ 7.5 MeV for '2C),

o distance between particles larger than the nucleon radius (~ 1 — 2 fm),

Probability for a particle to propagate over a distance x with no interactions is
1
P(x) = X exp(—x/A)
where A = (po)~! is the mean free path, while p is target density and o is interaction cross section

For nucleons inside nuclei: X<d<A<R

where A is the de Broglie wavelength, d is the distance between targets, and R is the nuclear radius

y

— nucleus can be modeled as a system of independent, quasifree nucleons
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Independent-particle model
General characteristics:

o discrete energy levels of a particle in a
potential well

Ei =T —U(Ti) < 0,

— nuclear binding

A
B=) (Ti—U(r)),

— separation energy
Es = Tmax — U(T),

—50 4

o Coulomb barrier for protons

e —— NIbSTTHE oo e e 210
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Fermi gas model

Let’s assume a gas of nucleons:

o nucleons are fermions,

— wave functions are antisymmetric

Wleeey Xy eeey Xy eee) = =W (eeey Xy ooy Xy oe2)

o degeneracy pressure from Pauli principle,

o no interactions between nucleons,

o everything immersed in an infinite
potential well

—R2
_VZII)(X) y,z) = B(x,y,2)

2m —35

— stationary Schrédinger equation

e —— NIbSTTHE oo e e 210
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Infinitely deep potential well

The wave functions:

Yy ons (6 Y, 2) = U, (), (Y)n, (2) = sin(kyx) sin(kyy) sin(k,2) @
The energies: )  n2p2 . thﬁ . n2p? R (n2 . ni . n2 ©
Nx,My,Nz = 2m 2m 2m 2m L% Lﬁ L%

The number of states up to the Fermi momentum:
2]_2
pi+Pi+p2<pi = ni+nl+nl< P ©)

We calculate the number of occupied of states:

14 (pfL > Pr 3 1 /pr\34
=5 277 —_— = = —_— = = —_— -
n 83”( ) 37t(7m) \% 3”(711‘1) 37TA 4)
(we took only '/ s of the total sphere (ny > 0, ny > 0, n, > 0), but with 2 spin states)

Finally, using ra = 10A'/3, we obtain the Fermi momenta for protons and neutrons:

—339j3£and _hfms/A-Z 5)
PPEoVa Va e Ve VA
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Fermi gas model... why not?

0.8 @ =25 Mev

=221 MeV/c

o analytical model for efficient computations,

o nucleon transition from below the Fermi sea to above

0(kr —[K|) — O(Ik + gl — kr)

]

ke = 260 MeV/c
€ =36 MeV

cm?
Sr-MeV

KI2/2M =V — ([K+ G? + M?)'/?

{IO-H

— final nucleon is a plane wave; SIS

P
30 de

TR N L
180 210 240 270 300

o captures general features of quasielastic peak o5

L | s
60 90 120 150

— Fermi momentum controls the spread, op ! ke - 265 Wevse

€ =44 Mev

— average interaction energy controls the shift; T
(e=(E)?e#V) T
2 X
E. J. Moniz et al., Phys.Rev.Lett. 26 (1971) 445-448 O35 d s T e T T H6 The 3%

w (MeV)
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...maybe better not

240.4 MeV, 60 deg 360.9 MeV, 60 deg 560 MeV, 60 deg
~ 224 MeV, 0.05 GeV? ~ 331 MeV, 0.10 GeV? ~ 501 MeV, 0.23 GeV?
— ]~20_""|""|"‘I 30""I""l""l"" 6""I“"I""l""
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> :
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= i
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Artur Ankowski R. Whitney et al., Phys.Rev. C 9 (1974), 2230
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NOT GREAT
NOT TERRIBLE
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Fermi gas model

[}

general assumptions are unclear

— taken limits are inconsistent;

[}

fails to predict proper energy levels

— unreliable for exclusive processes;

o lack of nucleon-nucleon interactions

— overestimates the inclusive data;

e}

local Fermi gas is more robust

— but makes even less sense;

S{p,E)

160 (e,e%p}

40
E MeV)

J. Mougey, Nucl.Phys. A 335 (1980) 35
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Problem 1.

Let’s take the '2C nucleus with kr = 221 MeV/c and & = 25 MeV.

(1) What are the general properties of this Fermi gas (Ef,V,Es)?

— what is the average nucleon energy?

(2) How does the spectral function of the Fermi gas model look like?

— what is the energy-momentum relation?

(3) How does the spectral function of a local Fermi gas looks like?

— how can we parametrize kr as a function of density p(r)?

e —— LIRS s &+ il 10 Tt i 5120
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Nuclear density and nucleon distribution for Carbon

05 3 1 1 1 1 1
f nuclear density [nucleon /fm3]
04 : — nucleon distribution [nucleon/fm]
03 F 3
02 3
01k 3
0 1 2 3 4 5 6
r [fm]

http://discovery.phys.virginia.edu/research/groups/ncd/index.html
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Nucleon in a central potential
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Nucleon in a central potential

Let’s consider a nucleon in a central
nuclear potential

— V=V(r) only

a= ‘thickness of the surface’

— angular momentum is conserved 0

o harmonic oscillator

R=nuclear ra((inlrs

Vho(r) = %mwzrz -Vi —%/2
o Woods-Saxon potential -V
Vins (1) = Y

—V01 +exp((r—R)/a)

with V ~ 50 MeV and a ~ 0.60

e —— NIbSTTHE oo e e 210
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Nucleon in a central potential

The Schrédinger equation: "2
—Tvzll) =V =k @
m
— in carthesian coordinates: - 32 32
Ve ooz &
— in spherical coordinates:
10 0 1 0 0 1 02
2_ ' 0 (20 b 9 (a9 i
V= (T ar>+rzsine 20 (Smeae>+rzsmze (aZcp) ®)
In spherical coordinates we separate variables:
b(r,0,d) =R(r)Y(6, d) *)
We obtain two equations:
1d [/ ,dR\ 2mr?
1 1 0 oY 1 2%Y
— = (sino— L 1
Y | sin6 00 <Sm9ae> * SinZe aqﬂ} Hr+1 (6)J
June 7th 2024 25 /42
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Nucleon in a central potential

Let’s consider the angular part and use Y (6, $) = ©(0)D(P):

1

(C] do do

1d¢e

©dp?

First we solve the latter: )
O(¢) = €™

= [sinei <sin9@>} +1(1+1)sin?0 = m?

— applying the condition ®(¢) = @ (2m + ¢) we must have m = 0, +1,£2, ...

Then, we solve the remaining:
O(0) = AP{"(cos 0)

— where P (cos 0) are the associate Legendre polynomials, and 1 = 0,1,2,...form = —1,—1+1,...,1—1,2

Y(6,d) = O(0)D(P) are the spherical harmonics:

Y(0,) = (1)

ar (1+m)!

@)

®)

©)

(10)

(11)

NuSTEC Summer School 2024

June 7th 2024
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Nucleon in a central potential

The spherical harmonics are the angular solution to
any central potential problem

The shape of the potential V(r) only affects the radial
part of the wave function
We have:
]—ZYlm(ead)) = l(l+ 1)h2Y1m(93d)) (12)
I—zYlm(ea d)) = thlm(ea d)) (13)

Angular momentum is quantized:

— the allowed values of lare 0, 1,2, ...

— sometimes we use the letters s, p, d, f, ...
— the allowed values of m are 0, £1, ..., 1
N

the eigenvalues of L?,L, are 1(1 + 1)h? and mh

v

Y906, o)

Y76, ¢)

2
|

=2
=
=

(¢

Yoo, o)

‘v
:
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Nucleon in a central potential

Now, let us come back to the radial part:

1d/,dR 2mr?
=5 (T E) -2 [V(r) —El=1(1+1) (14)
We introduce R(r) = w(r)/r:
h d?u(r) L1+ 1)h?
TIm ane ( T2 +V(r) | u(r) = Eu(r), (15)
where 9
u(co) =0, u(0) =0, j u?(r)dr =1 (16)
0
E.g., for the harmonic oscillator of U(r) = I mw?r%:
mw\2+2 me 1/, MW
w, (1) = (T) e IRHILT /Z(Trz) 17)
with energy levels
Ex1 =hw(2k + 1+ 3/2) = hw(N + 3/2) (18)
~ KajetanNiewczas NuSTEC Summer School 2024 June 7th 2024 28 / 42



Nucleon in a central potential

(0.4)
/,n,z) ,1°dg ‘n% ;
“d (1
¢ 024 (20) 25 (2
Harmonic oscillator energy spectrum is degenerate 03) _of (1)
— - 1%
3 13 ) S (6)
Energy levels are quantized: P
— major oscillator quantum number: N =0, 1,2, ... 02) _o4 (10)
— orbital quantum number: 1 =N,N —2,...,1,0 2 0,2 (1.0) “1s (2)
— radial quantum number: k = (N —1)/2
1 1 o ® s
Magic numbers appear in the spectrum
v
-0s (2)
N=0 1=0 k=0,1=0
June 7th 2024
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Spin-orbit coupling

So far we worked with the following Hamiltonian:

A A
Ho =) (T +U(ri)) Zho Eo=) eq (19)

Let’s introduce a spin-orbit term:
h=ho+{(r)l-s (20)

2 Nobel Prize in Physics 1963, E.P. Wigner, M. Goeppert Meyer, ].H.D. Jensen

So far, both parallel and antiparallel orientations have the same energies:

. q q Un (T G)
(nlj,m| ho Iy, m) = ely), (r,0lnlj,m) = % [Y1(8,d) ®x'2(0)], (21)
We can express the spin-orbit term as ((r )%(] —12 —s?) and obtain €15 = e + Aenyj with
. . D (..
Aenyy = (MY, m| {(r)1-s nlj, m), Aeny = 5 G+ —1L+1)— 2 (22)
Finally, defining D = [u2,(r)¢(r)dr and ¢(r) = Vi,13 1 2517 we get:
Aenrj—ir1, = (D/2) -1,  Aenijoir =—(D/2) - (1+1) (23)1

e —— LR St s el T



Spin-orbit coupling

dulr)
dr
/
{ /‘D/z-nn) j=1-1%
N — e (SS R—
U r i
AN | j = |4.1/2
a) b)

K. Heyde, The Nuclear Shell Model (1990)
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Woods-Saxon potential

Sd ;é
g 69 W
%
Ry (1) (fm)
—é

w |
22 _ ¥,
!‘R’d'” "—“E.;’%;z %99
151 st _< %
0s | 7 - Yy, %
2
82 Sh—(
k)
ad 7)/25% 7;?/2
0 5 R, 10 15 20 r(fm) 50 ——2
) | S pr— 1
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28 37 e
20
-05 | % %
=
2
3
——— % —_—
2
— correct magic numbers: 2, 8, 20, 28, 50, 82, 126, ... - ¥ %
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Problem 2.

Let’s take the nucleon in a spherical potential well:

dR(r) N 2 dR(r) n Z—m(E—V(r)) - L+ 1)

R(r) =0
dr r dr h 2 ()

(1) What are the radial solutions to this problem?
—  Handbook of Mathemathical Functions..., M. Abramowitz, I. A. Stegun, Eq. 10.1.1

(2) What are the energy levels for nucleons?

— what are the roots of the solution and their relation to k = hp?

(3) What is the average nucleon energy as confronted with a Fermi gas?

— what is the depth of the potential using the same separation energy as before?

Kajetan Niewczas NuSTEC Summer School 2024 June 7th 2024 33/ 42



Mean-field nuclear potential
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Mean-field nuclear picture

T12 [fm]

—100

50 4

U(r) MeV]

T [fm]

— let’s try to use a realistic nucleon-nucleon potential to derive the central nuclear potential

NuSTEC Summer School 2024
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Mean-field potential

Single-particle radial Schrodinger equation:

(T+U([T) balr) = eadalr) 1)
Nuclear Hamiltonian: A A
Ho =) (Ti+U(r)) Zho Eo=) €q(r:) @)
i=1 i=1
Nuclear wave function is a Slater determinant:
: Ga, (r1) oot day (Ta)
q)u1,...,aA (T‘],...,T‘A) = ﬁ (3)
¢QA(T1) d)aA(TA)

Let’s restrict ourselves to two-body interactions only and evaluate the mean-field potential:

H= ZT+ ZVU (4)

i,j=1

A A A A
H = ; (T + U(r) + (l > Vi ; um) = Ho -l = ; ho (1) + Hres, ®)

i,j=1

e — e Crnn oo —— -



Hartree-Fock methods

Let’s consider a density in terms of the occupied single-particle states:

1) =) ¢p(r)dy(r) ©6)
b
The Hartree potential at a given point generated by the two-body interaction:
Un(r) = 3 [ 64V /) () o )
b
The Schrodinger equation becomeS'
X v, ZJ Vi, ) (F)dr - s 1)
®)
ZJ(D Ve, 1)y () e (1)’ = €1 (1)
h? ’
2o V(8] Un(e)a(r) — [ Uy ) () = () ©)
where the exchange term is driven by the Fock potential:
Z(bb V(r, )y () (10)
4
o —— AOLETE St s o e 1
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The iterative Hartree-Fock method
— start with an initial guess for the average field or the wave functions

— using the nucleon-nucleon potential V(r,r’) solve the equation

TR ul8) + Un )0~ [ Urle 010 = €1l

— determine new values of Uy (r), Ug(r, 1), di(1), €;

0 1) (2)
;&F)("') fq(p)("') H(F)(r)
l / ! / ! /
) PO (r) P2 (r)
€E.O) 5?) 822)

— at convergence: the final field Uy (r), wave function ¢;(r), and single-particle energy €;

o —— LIRS s & il 10 Tt i 5120

38 /42



Nucleons in the mean-field potential

W. H. Dickhoff, D. Van Neck, Many-body Theory Exposed! (2005)

— nucleon lines are dressed according to the Hartree-Fock procedure
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Charge densities from the mean-field framework

SkE2 —

[ L)
o 3

1%
o 1t 2 3 4 5 6 7 r 0 1 2 3 4 5 6 7 v

K. Heyde, The Nuclear Shell Model (1990)
~ KajetanNiewczas NuSTEC Summer School 2024 June 7th 2024 40 / 42




Charge densities from the mean-field framework

CHARGE DENSITY DIFFERENCE
2065, 205,

THEORY

0.0

I
.ﬁVEXPERMENT
o

a
r*l
|
1
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CHARGE DENSITY DIFFERENCE (e/fm3)

0.002- )
ol L —
1 1 1 1 .
o 2 10

4 6
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Fig. 3.18. The nuclear density distribution for the least bound proton in 2°6Pb, The shell-model pre-
dicts the last (35, /2) proton in 206Pp to have a sharp maximum at the centre, as shown at the left-hand
side. On the right-hand side the nuclear charge density difference g (2%Pb)—g. (2%5TI) = <p§’l/2(r)
is given [taken from (Frois 1983) and Doe 1983)]

K. Heyde, The Nuclear Shell Model (1990)
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Relativistic mean-field

All of this can be also done in a relativistic framework:
o Schrodinger equation — Dirac equation,
o Wave functions — Dirac spinors,

E
o Spin-orbit term comes for free! M =M —S(r)

P,

=
o
(J*T)=(0*,0) J=T)x=(1-,0) (J=T)=(1-,1) = |
E 200
- o~
Sr)=g,0r) V(r)=g,0(r)+g,7p(r)+eAlr) = |
/ / % -400
Sigma-meson: Omega-meson: Rho-meson: B
attractive scalar field short-range repulsive isovector field -600,

4
r (fm)
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