One- and two-nucleon knock-out in neutrino-nucleus scattering: Nuclear mean-field approaches

Kajetan Niewczas

Kinematical energy reconstruction

Calorimetric energy reconstruction

Nuclear response in the quasielastic and Δ regions

Outline

Lecture 1. the general framework of the nuclear mean-field model
(1) Independent-particle model
(2) Nucleon in a central potential
(3) Mean-field nuclear potential

Lecture 2. one- and two-nucleon knock-out in lepton-nucleus scattering

Let's model a nucleus

Basic property of the nucleus-binding

$$
M(Z, N)=Z M_{p}+N M_{n}-B
$$

Nuclear packing fraction:

\rightarrow for nuclei: $0.07<$ NFP <0.42
\rightarrow for hard spheres: ≈ 0.74
\rightarrow for liquid argon: ≈ 0.032
Nucleus is like a dense quantum liquid

Fig. 3.1 Average binding energy B / \boldsymbol{A} in Mev per nucleon for the naturally oceurring nuclides (and $B e^{\mathrm{k}}$), as a function of mass number A. Note the change of magnification in the A scale at $A=30$. The Pauli four-shells in the lightest nuclei are evident. For $A \geq 16, B / A$ is roughly constant; hence, to a first approximation, B is proportional to A.

R. Evans, The Atomic Nucleus (1955)

Liquid-drop model

Bethe-Weiszäcker mass formula

$$
\begin{aligned}
B & =a_{V} A & & \rightarrow \text { volume } \\
& -a_{S} A^{2 / 3} & & \rightarrow \text { surface } \\
& -a_{C} \frac{Z^{2}}{A^{1 / 3}} & & \rightarrow \text { Coulomb } \\
& -a_{A} \frac{(N-Z)^{2}}{A} & & \rightarrow \text { asymmetry } \\
& \pm \Delta & & \rightarrow \text { pairing }
\end{aligned}
$$

Fig. 3.5 Summary of the semiempirical liquid-drop-model treatment of the average binding-energy curve from Fig. 3.1 of Chap. 9. Note how the decrease in surface energy and the increase in coulomb energy conspire to produce the maximum observed in B / A at $A \sim \mathbf{6 0}$. For these curves, the constants used in the semiempirical mass formula are given in the last line of Table 3.3.

Volume

Surface

Coulomb

Asymmetry

Pairing

Independent-particle model

Basic assumptions

Elementary model of nuclear physics:

- nonrelativistic,
- nucleons are explicit degrees of freedom,
- described by the following Hamiltonian

$$
\hat{H}=\sum_{i}^{A} \hat{T}_{i}+\sum_{i<j}^{A} \hat{V}_{i j}+\sum_{i<j<k}^{A} \hat{V}_{i j k}+\ldots
$$

- two-body potential obtained from
\rightarrow phenomenology,
\rightarrow one-boson exchange models,
\rightarrow using χ EFT;
- three-body potential obtained from
\rightarrow phenomenology,
\rightarrow using χ EFT;

Nucleon-nucleon interaction

Two-body potentials (e.g. Argonne ν_{18}) use angular momentum and isospin operators of the form

$$
\left\{1, \mathrm{~L} \cdot \mathrm{~S}, \sigma_{1} \cdot \sigma_{2}, \mathrm{~S}_{12}, \mathrm{~L}^{2},(\mathrm{~L} \cdot \mathrm{~S})^{2}, \mathrm{~L}^{2} \sigma_{1} \cdot \sigma_{2}\right\}, \quad\left\{1, \tau_{1} \cdot \tau_{2}\right\}
$$

Nucleon-nucleon interaction

Nuclear force:
Isospin symmetry:

- Short range
- Repulsive core
- Charge symmetry and independence
- Spin dependence

$$
\circ \text { isospin } T=1 / 2
$$

\rightarrow neutron $\mathrm{T}_{z}=-1 / 2$
\rightarrow proton $\mathrm{T}_{z}=+1 / 2$
\rightarrow nucleus $\mathrm{T}_{z}=1 / 2(\mathrm{Z}-\mathrm{N})$
Approximately conserved in nuclei

- $n n, p p: T=1$
\rightarrow must have $S=0$
\rightarrow marginally unbound
- $n p: T=0,1$
$\rightarrow \mathrm{S}=0$ is unbound
$\rightarrow S=1$ is bound with $\mathrm{B}=2.2 \mathrm{MeV}$

Figure 14.10: The tensor force in the deuteron is attractive in the cigar-shaped configuration and repulsive in the diskshaped one. Two bar magnets provide a classical example of a tensor force.

Nucleon-nucleon interaction

FIG. 6. Central, isospin, spin, and spin-isospin components of the potential. The central potential has a peak value of 2031 MeV at $r=0$.

FIG. 11. The deuteron S - and D-wave function components divided by r.
R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys.Rev. C 51 (1995), 38-51

Independent-particle model

What do we know so far:

- nuclei are made of nucleons,
- binding per nucleon is relatively small ($\simeq 7.5 \mathrm{MeV}$ for ${ }^{12} \mathrm{C}$),
- distance between particles larger than the nucleon radius ($\simeq 1-2 \mathrm{fm}$),

Probability for a particle to propagate over a distance x with no interactions is

$$
P(x)=\frac{1}{\lambda} \exp (-x / \lambda)
$$

where $\lambda=(\rho \sigma)^{-1}$ is the mean free path, while ρ is target density and σ is interaction cross section For nucleons inside nuclei:

$$
\tilde{\lambda} \ll d<\lambda<R
$$

where $\tilde{\lambda}$ is the de Broglie wavelength, d is the distance between targets, and R is the nuclear radius
\rightarrow nucleus can be modeled as a system of independent, quasifree nucleons

Independent-particle model

General characteristics:

- discrete energy levels of a particle in a

Fermi gas model

Let's assume a gas of nucleons:

- nucleons are fermions,
\rightarrow wave functions are antisymmetric

$$
\psi\left(\ldots, x_{a}, \ldots, x_{b}, \ldots\right)=-\psi\left(\ldots, x_{b}, \ldots, x_{a}, \ldots\right)
$$

- degeneracy pressure from Pauli principle,
- no interactions between nucleons,
- everything immersed in an infinite potential well

$$
\frac{-\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi(x, y, z)=\mathrm{E} \psi(x, y, z)
$$

\rightarrow stationary Schrödinger equation

Infinitely deep potential well

The wave functions:

$$
\begin{equation*}
\Psi_{n_{x}, n_{y}, n_{z}}(x, y, z)=\psi_{n_{x}}(x) \psi_{n_{y}}(y) \psi_{n_{z}}(z)=\sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right) \tag{1}
\end{equation*}
$$

The energies:

$$
\begin{equation*}
\mathrm{E}_{n_{x}, n_{y}, n_{z}}=\frac{\hbar^{2} p_{x}^{2}}{2 m}+\frac{\hbar^{2} p_{y}^{2}}{2 m}+\frac{\hbar^{2} p_{z}^{2}}{2 m}=\frac{\hbar^{2} \pi^{2}}{2 m}\left(\frac{n_{x}^{2}}{L_{x}^{2}}+\frac{n_{y}^{2}}{L_{y}^{2}}+\frac{n_{z}^{2}}{L_{z}^{2}}\right) \tag{2}
\end{equation*}
$$

The number of states up to the Fermi momentum:

$$
\begin{equation*}
p_{x}^{2}+p_{y}^{2}+p_{z}^{2}<p_{F}^{2} \Longrightarrow n_{x}^{2}+n_{y}^{2}+n_{z}^{2}<\frac{p_{F}^{2} L^{2}}{\pi^{2} \hbar^{2}} \tag{3}
\end{equation*}
$$

We calculate the number of occupied of states:

$$
\begin{equation*}
\mathrm{n}=2 \frac{1}{8} \frac{4}{3} \pi\left(\frac{\mathrm{p}_{\mathrm{F}} \mathrm{~L}}{\pi \hbar}\right)^{3}=\frac{1}{3} \pi\left(\frac{\mathrm{p}_{\mathrm{F}}}{\pi \hbar}\right)^{3} \mathrm{~V}=\frac{1}{3} \pi\left(\frac{\mathrm{p}_{\mathrm{F}}}{\pi \hbar}\right)^{3} \frac{4}{3} \pi r_{\mathrm{A}}^{3} \tag{4}
\end{equation*}
$$

(we took only $1 / 8$ of the total sphere ($n_{x}>0, n_{y}>0, n_{z}>0$), but with 2 spin states)
Finally, using $r_{A}=r_{0} A^{1 / 3}$, we obtain the Fermi momenta for protons and neutrons:

$$
\begin{equation*}
p_{F}=\frac{\hbar}{r_{0}} \sqrt[3]{\frac{9 \pi}{4}} \sqrt[3]{\frac{Z}{A}} \text { and } p_{F}=\frac{\hbar}{r_{0}} \sqrt[3]{\frac{9 \pi}{4}} \sqrt[3]{\frac{A-Z}{A}} \tag{5}
\end{equation*}
$$

Fermi gas model... why not?

- analytical model for efficient computations,
- nucleon transition from below the Fermi sea to above

$$
\begin{gathered}
\theta\left(k_{F}-|\vec{k}|\right) \rightarrow \theta\left(|\vec{k}+\vec{q}|-k_{F}\right) \\
|\vec{k}|^{2} / 2 M-V \rightarrow\left(|\vec{k}+\vec{q}|^{2}+M^{2}\right)^{1 / 2}
\end{gathered}
$$

\rightarrow final nucleon is a plane wave;

- captures general features of quasielastic peak
\rightarrow Fermi momentum controls the spread,
\rightarrow average interaction energy controls the shift; $(\bar{\epsilon}=\langle\mathrm{E}\rangle ? \bar{\epsilon} \neq \mathrm{V})$

E. J. Moniz et al., Phys.Rev.Lett. 26 (1971) 445-448

...maybe better not

Artur Ankowski
R. Whitney et al., Phys.Rev. C 9 (1974), 2230

Fermi gas model

- general assumptions are unclear
\rightarrow taken limits are inconsistent;
- fails to predict proper energy levels
\rightarrow unreliable for exclusive processes;
- lack of nucleon-nucleon interactions
\rightarrow overestimates the inclusive data;
- local Fermi gas is more robust
\rightarrow but makes even less sense;

Problem 1.

Let's take the ${ }^{12} \mathrm{C}$ nucleus with $\mathrm{k}_{\mathrm{F}}=221 \mathrm{MeV} / \mathrm{c}$ and $\bar{\epsilon}=25 \mathrm{MeV}$.
(1) What are the general properties of this Fermi gas $\left(E_{F}, V, E_{s}\right)$?
\rightarrow what is the average nucleon energy?
(2) How does the spectral function of the Fermi gas model look like?
\rightarrow what is the energy-momentum relation?
(3) How does the spectral function of a local Fermi gas looks like?
\rightarrow how can we parametrize k_{F} as a function of density $\rho(r)$?

Nuclear density and nucleon distribution for Carbon

Nucleon in a central potential

Nucleon in a central potential

Let's consider a nucleon in a central nuclear potential
$\rightarrow \mathrm{V}=\mathrm{V}(\mathrm{r})$ only
\rightarrow angular momentum is conserved

- harmonic oscillator

$$
V_{\mathrm{HO}}(r)=\frac{1}{2} m \omega^{2} r^{2}-V_{1}
$$

- Woods-Saxon potential

$$
V_{\mathrm{WS}}(\mathrm{r})=-\mathrm{V}_{0} \frac{1}{1+\exp ((\mathrm{r}-\mathrm{R}) / \mathrm{a})}
$$

with $V_{0} \simeq 50 \mathrm{MeV}$ and $\mathrm{a} \simeq 0.60$

Nucleon in a central potential

The Schrödinger equation:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi-V(r) \psi=E \psi \tag{1}
\end{equation*}
$$

\rightarrow in carthesian coordinates:

$$
\begin{equation*}
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{2}
\end{equation*}
$$

\rightarrow in spherical coordinates:

$$
\begin{equation*}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2}}{\partial^{2} \phi}\right) \tag{3}
\end{equation*}
$$

In spherical coordinates we separate variables:

$$
\begin{equation*}
\psi(r, \theta, \phi)=R(r) Y(\theta, \phi) \tag{4}
\end{equation*}
$$

We obtain two equations:

$$
\begin{align*}
& \frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}[V(r)-E]=l(l+1) \tag{5}\\
& \frac{1}{Y}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right\}=-l(l+1) \tag{6}
\end{align*}
$$

Nucleon in a central potential

Let's consider the angular part and use $Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)$:

$$
\begin{align*}
& \frac{1}{\Theta}\left[\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta}{d \theta}\right)\right]+l(l+1) \sin ^{2} \theta=m^{2} \tag{7}\\
& \frac{1}{\Phi} \frac{d^{2} \Theta}{d \phi^{2}}=-m^{2} \tag{8}
\end{align*}
$$

First we solve the latter:

$$
\begin{equation*}
\Phi(\phi)=e^{i m \phi} \tag{9}
\end{equation*}
$$

\rightarrow applying the condition $\Phi(\phi)=\Phi(2 \pi+\phi)$ we must have $m=0, \pm 1, \pm 2, \ldots$
Then, we solve the remaining:

$$
\begin{equation*}
\Theta(\theta)=A P_{\mathrm{l}}^{\mathrm{m}}(\cos \theta) \tag{10}
\end{equation*}
$$

\rightarrow where $P_{l}^{m}(\cos \theta)$ are the associate Legendre polynomials, and $l=0,1,2, \ldots$ for $m=-l,-l+1, \ldots, l-1,2$
$\mathrm{Y}(\theta, \phi)=\Theta(\theta) \Phi(\phi)$ are the spherical harmonics:

$$
\begin{equation*}
Y(\theta, \phi)=(-1)^{m} \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-m)!}{(l+m)!}} e^{i m \phi} P_{l}^{m}(\cos \theta) \tag{11}
\end{equation*}
$$

Nucleon in a central potential

The spherical harmonics are the angular solution to any central potential problem

The shape of the potential $\mathrm{V}(\mathrm{r})$ only affects the radial part of the wave function

We have:

$$
\begin{align*}
& \mathrm{L}^{2} Y_{l m}(\theta, \phi)=l(l+1) \hbar^{2} Y_{l m}(\theta, \phi) \tag{12}\\
& L_{z} Y_{l m}(\theta, \phi)=m \hbar Y_{l m}(\theta, \phi) \tag{13}
\end{align*}
$$

Angular momentum is quantized:
\rightarrow the allowed values of l are $0,1,2, \ldots$
\rightarrow sometimes we use the letters s, p, d, f, \ldots
\rightarrow the allowed values of m are $0, \pm 1, \ldots, \pm l$
\rightarrow the eigenvalues of L^{2}, L_{z} are $l(l+1) \hbar^{2}$ and $m \hbar$
$\left|Y_{0}^{0}(\theta, \phi)\right|^{2}$

$$
\left|Y_{1}^{0}(\theta, \phi)\right|^{2}
$$

$\left|Y_{2}^{0}(\theta, \phi)\right|^{2}$

$$
\left|Y_{1}^{1}(\theta, \phi)\right|^{2}
$$

$$
\left|Y_{3}^{0}(\theta, \phi)\right|^{2}
$$

$$
\left|Y_{3}^{1}(\theta, \phi)\right|^{2}
$$

$\left|Y_{3}^{3}(\theta, \phi)\right|^{2}$

Nucleon in a central potential

Now, let us come back to the radial part:

$$
\begin{equation*}
\frac{1}{\mathrm{R}} \frac{\mathrm{~d}}{\mathrm{dr}}\left(\mathrm{r}^{2} \frac{\mathrm{dR}}{\mathrm{dr}}\right)-\frac{2 m r^{2}}{\hbar^{2}}[V(r)-E]=l(l+1) \tag{14}
\end{equation*}
$$

We introduce $R(r)=u(r) / r$:

$$
\begin{equation*}
-\frac{\hbar}{2 m} \frac{d^{2} u(r)}{d r^{2}}+\left(\frac{l(l+1) \hbar^{2}}{2 m r^{2}}+V(r)\right) u(r)=E u(r) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
u(\infty)=0, \quad u(0)=0, \quad \int_{0}^{\infty} u^{2}(r) d r=1 \tag{16}
\end{equation*}
$$

E.g., for the harmonic oscillator of $U(r)=\frac{1}{2} m \omega^{2} r^{2}$:

$$
\begin{equation*}
u_{k, l}(r)=\left(\frac{m \omega}{\hbar}\right)^{l / 2+1 / 2} e^{-\frac{m \omega}{2 \hbar}} r^{l+1} L_{k}^{l+1 / 2}\left(\frac{m \omega}{\hbar} r^{2}\right) \tag{17}
\end{equation*}
$$

with energy levels

$$
\begin{equation*}
E_{k, l}=\hbar \omega(2 k+l+3 / 2)=\hbar \omega(N+3 / 2) \tag{18}
\end{equation*}
$$

Nucleon in a central potential

Harmonic oscillator energy spectrum is degenerate

Energy levels are quantized:
\rightarrow major oscillator quantum number: $\mathrm{N}=0,1,2, \ldots$
\rightarrow orbital quantum number: $l=N, N-2, \ldots, 1,0$
\rightarrow radial quantum number: $k=(N-l) / 2$

Magic numbers appear in the spectrum

[70]

$N=0 \quad 1=0 \quad$ k=0. $1=0 \quad$ Os (2) \quad [2]

Spin-orbit coupling

So far we worked with the following Hamiltonian:

$$
\begin{equation*}
H_{0}=\sum_{i}^{A}\left(T_{i}+u\left(r_{i}\right)\right)=\sum_{i}^{A} h_{0}(i), \quad E_{0}=\sum_{i}^{A} \epsilon_{a_{i}} \tag{19}
\end{equation*}
$$

Let's introduce a spin-orbit term:

$$
\begin{equation*}
h=h_{0}+\zeta(r) \mathbf{l} \cdot \mathbf{s} \tag{20}
\end{equation*}
$$

Nobel Prize in Physics 1963, E.P. Wigner, M. Goeppert Meyer, J.H.D. Jensen
So far, both parallel and antiparallel orientations have the same energies:

$$
\begin{equation*}
\langle n l j, m| h_{0}|n l j, m\rangle=\epsilon_{n l j}^{(0)}, \quad\langle\mathbf{r}, \sigma \mid n l j, m\rangle=\frac{u_{n l}(r)}{r}\left[\mathbf{Y}_{l}(\theta, \phi) \otimes \chi^{1 / 2}(\sigma)\right]_{m}^{(j)} \tag{21}
\end{equation*}
$$

We can express the spin-orbit term as $\zeta(r) \frac{1}{2}\left(\mathfrak{j}^{2}-1^{2}-s^{2}\right)$ and obtain $\epsilon_{n l j}=\epsilon_{n l j}^{(0)}+\Delta \epsilon_{n l j}$ with

$$
\begin{equation*}
\Delta \epsilon_{n l j}=\langle n l j, m| \zeta(r) \mathbf{l} \cdot \mathbf{s}|n l j, m\rangle, \quad \Delta \epsilon_{n l j}=\frac{D}{2}\left[j(j+1)-l(l+1)-\frac{3}{4}\right] \tag{22}
\end{equation*}
$$

Finally, defining $D=\int u_{n l}^{2}(r) \zeta(r) d r$ and $\zeta(r)=V_{l s} r_{0}^{2} \frac{1}{r} \frac{\partial u(r)}{\partial r}$, we get:

$$
\begin{equation*}
\Delta \epsilon_{n l} j=l+1 / 2=(D / 2) \cdot l, \quad \Delta \epsilon_{n l} j=l-1 / 2=-(D / 2) \cdot(l+1) \tag{23}
\end{equation*}
$$

Spin-orbit coupling

K. Heyde, The Nuclear Shell Model (1990)

Woods-Saxon potential

Problem 2.

Let's take the nucleon in a spherical potential well:

$$
\frac{d R(r)}{d r}+\frac{2}{r} \frac{d R(r)}{d r}+\left[\frac{2 m}{\hbar}(E-V(r))-\frac{l(l+1)}{r^{2}}\right] R(r)=0
$$

(1) What are the radial solutions to this problem?
\rightarrow Handbook of Mathemathical Functions..., M. Abramowitz, I. A. Stegun, Eq. 10.1.1
(2) What are the energy levels for nucleons?
\rightarrow what are the roots of the solution and their relation to $k=\hbar p$?
(3) What is the average nucleon energy as confronted with a Fermi gas?
\rightarrow what is the depth of the potential using the same separation energy as before?

Mean-field nuclear potential

Mean-field nuclear picture

\rightarrow let's try to use a realistic nucleon-nucleon potential to derive the central nuclear potential

Mean-field potential

Single-particle radial Schrödinger equation:

$$
\begin{equation*}
(T+U(r)) \phi_{a}(r)=\epsilon_{a} \phi_{a}(r) \tag{1}
\end{equation*}
$$

Nuclear Hamiltonian:

$$
\begin{equation*}
H_{0}=\sum_{i=1}^{A}\left(T_{i}+U\left(r_{i}\right)\right)=\sum_{i=1}^{A} h_{0}(i), \quad E_{0}=\sum_{i=1}^{A} \epsilon_{a_{i}}\left(r_{i}\right) \tag{2}
\end{equation*}
$$

Nuclear wave function is a Slater determinant:

$$
\begin{align*}
& \text { Slater determinant: } \tag{3}\\
& \Phi_{a_{1}, \ldots, a_{A}}\left(r_{1}, \ldots, r_{A}\right)=\frac{1}{\sqrt{A!}}\left|\begin{array}{ccc}
\phi_{a_{1}}\left(r_{1}\right) & \ldots & \phi_{a_{1}}\left(r_{A}\right) \\
\vdots & \ddots & \vdots \\
\phi_{a_{A}}\left(r_{1}\right) & \ldots & \phi_{a_{A}}\left(r_{A}\right)
\end{array}\right|
\end{align*}
$$

Let's restrict ourselves to two-body interactions only and evaluate the mean-field potential:

$$
\begin{gather*}
H=\sum_{i=1}^{A} T_{i}+\frac{1}{2} \sum_{i, j=1}^{A} V_{i j} \tag{4}\\
H=\sum_{i=1}^{A}\left(T_{i}+U\left(r_{i}\right)\right)+\left(\frac{1}{2} \sum_{i, j=1}^{A} V_{i j}-\sum_{i=1}^{A} u\left(r_{i}\right)\right)=H_{0}+H_{r e s}=\sum_{i=1}^{A} h_{0}(i)+H_{r e s}, \tag{5}
\end{gather*}
$$

Hartree-Fock methods

Let's consider a density in terms of the occupied single-particle states:

$$
\begin{equation*}
\rho(\mathbf{r})=\sum_{\mathrm{b}} \phi_{\mathrm{b}}^{*}(\mathbf{r}) \phi_{\mathrm{b}}(\mathbf{r}) \tag{6}
\end{equation*}
$$

The Hartree potential at a given point generated by the two-body interaction:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{H}}(\mathbf{r})=\sum_{\mathrm{b}} \int \phi_{\mathrm{b}}^{*}\left(\mathbf{r}^{\prime}\right) \mathrm{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi_{\mathrm{b}}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} \tag{7}
\end{equation*}
$$

The Schrödinger equation becomes:

$$
\begin{align*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi_{\mathrm{i}}(\mathbf{r}) & +\sum_{\mathrm{b}} \int \phi_{\mathrm{b}}^{*}\left(\mathbf{r}^{\prime}\right) \mathrm{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi_{\mathrm{b}}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime} \cdot \phi_{\mathrm{i}}(\mathbf{r}) \\
& -\sum_{\mathrm{b}} \int \phi_{\mathrm{b}}^{*}\left(\mathbf{r}^{\prime}\right) \mathrm{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi_{\mathrm{b}}(\mathbf{r}) \phi_{\mathrm{i}}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}=\epsilon_{\mathrm{i}} \phi_{\mathfrak{i}}(\mathbf{r}) \tag{8}\\
-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi_{\mathrm{i}}(\mathbf{r}) & +\mathrm{U}_{\mathrm{H}}(\mathbf{r}) \phi_{\mathfrak{i}}(\mathbf{r})-\int \mathrm{U}_{\mathrm{F}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi_{\mathrm{i}}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r}^{\prime}=\epsilon_{\mathrm{i}} \phi_{\mathrm{i}}(\mathbf{r}) \tag{9}
\end{align*}
$$

where the exchange term is driven by the Fock potential:

$$
\begin{equation*}
\mathrm{U}_{\mathrm{F}}(\mathbf{r})=\sum_{\mathrm{b}} \phi_{\mathrm{b}}^{*}\left(\mathbf{r}^{\prime}\right) \mathrm{V}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi_{\mathrm{b}}(\mathbf{r}) \tag{10}
\end{equation*}
$$

The iterative Hartree-Fock method

\rightarrow start with an initial guess for the average field or the wave functions
\rightarrow using the nucleon-nucleon potential $V\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ solve the equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \phi_{\mathfrak{i}}(\mathbf{r})+\mathrm{U}_{\mathrm{H}}(\mathbf{r}) \phi_{\mathrm{i}}(\mathbf{r})-\int \mathrm{U}_{\mathrm{F}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \phi_{\mathfrak{i}}\left(\mathbf{r}^{\prime}\right) \mathrm{r}^{\prime}=\epsilon_{i} \phi_{\mathrm{i}}(\mathbf{r})
$$

\rightarrow determine new values of $\mathrm{U}_{\mathrm{H}}(\mathrm{r}), \mathrm{U}_{\mathrm{F}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right), \phi_{\mathrm{i}}(\mathbf{r}), \epsilon_{\mathrm{i}}$

$\varepsilon_{i}^{(2)}$
\rightarrow at convergence: the final field $U_{H}(\mathbf{r})$, wave function $\phi_{i}(\mathbf{r})$, and single-particle energy ϵ_{i}

Nucleons in the mean-field potential

W. H. Dickhoff, D. Van Neck, Many-body Theory Exposed! (2005)
\rightarrow nucleon lines are dressed according to the Hartree-Fock procedure

Charge densities from the mean-field framework

SkE2 - SkE4 ---- Exp a)

Charge densities from the mean-field framework

Fig. 3.18. The nuclear density distribution for the least bound proton in ${ }^{206} \mathrm{~Pb}$. The shell-model predicts the last $\left(3 s_{1 / 2}\right)$ proton in ${ }^{206} \mathrm{~Pb}$ to have a sharp maximum at the centre, as shown at the left-hand side. On the right-hand side the nuclear charge density difference $\varrho_{c}\left({ }^{206} \mathrm{~Pb}\right)-\varrho_{c}\left({ }^{205} \mathrm{Tl}\right)=\varphi_{3_{s_{1 / 2}}}^{2}(r)$ is given [taken from (Frois 1983) and Doe 1983)]

> K. Heyde, The Nuclear Shell Model (1990)

Relativistic mean-field

All of this can be also done in a relativistic framework:

$$
\left(\tilde{E} \gamma_{0}-\vec{p} \cdot \vec{\gamma}-\tilde{M}\right) \psi=0
$$

- Schrödinger equation \rightarrow Dirac equation,
- Wave functions \rightarrow Dirac spinors,

$$
\begin{aligned}
\tilde{E} & =\mathrm{E}-\mathrm{V}(\mathrm{r}) \\
\tilde{M} & =M-S(r)
\end{aligned}
$$

- Spin-orbit term comes for free!

