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What is probability?

• Example: Coin flip
• Probability of throwing heads P(H)
• Single throw does not tell us much
• Ratio for lots of throws

 
• Frequentist definition

• Probability of coin being fair
 
• Frequentist?

 
• No matter how often we throw/measure, coin is fair or not
• We don’t know which!
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Bayesian probability

• Bayesian definition: Probability is interpreted as
• reasonable expectation
• representing a state of knowledge
• quantification of a personal (!) belief

• Allows assigning arbitrary probability of coin being fair

• If P is subjective, what does it mean exactly? 
• P = 1 → Something is true
• P = 0 → Something is false
• P = 0.3 → ???

• Fair bet: Will not lose (or win) money in the long term
• Considering all information, at what odds would you bet?

• “Semi frequentist” over all instances when you apply Bayesian stats?
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Mathematical probability 

• Frequentist vs. Bayesian deals with interpretation
• Influences what we can consider a random variable

• Mathematical rules are the same
• Probability (Kolmogorov) axioms
• P are real numbers > 0
• Total probability = 1
• P of mutually exclusive

events is additive

• Conditional probability → Bayes’ theorem

 
• Applies to both Bayesian and Frequentist random variables

• “Fair or not” is not a random variable in Frequentist interpretation!
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• What if outcome of experiment lies on continuum?
• Define Probability Density Function (PDF)

f (or sometimes p) so that

• Note that P[X = 40] = 0
• Infinitely many points on x, P of single point = 0

Probability density
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Summary I

• Two different interpretations of probability
• Frequentist → Probability is frequency limit
• Bayesian → Probability is certainty or reasonable expectation

• Differ in what can be considered a random variable
• Same rules for calculations with random variables
• Bayes’ theorem works for both!

• Homework: Frequentist probability or not?
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P(rolling 1 on D20), P(rolling 1 on next D20 roll), 
P(a randomly picked summer day being sunny), 

P(yesterday being sunny), P(tomorrow being sunny), 
P(people actually doing their homework)



What are error bars?
• Bars in plots can be all sorts of things

• Bin widths
• Poisson variance estimate sqrt(N)
• ???
• Read the paper
• Specify in your paper!

• Bayesian → Credible Interval
• Parameter is random variable
• Probability of true value within = Credibility Level 

(often 68%) 

• Frequentist → Confidence Interval
• Parameter is fixed (!) but unknown
• Interval edges are random variables
• Probability of CI covering truth = Confidence 

Level (often 68%)
• No matter what the true value is

• Not the same!
• E.g. empty or unphysical confidence intervals are 

OK! (albeit annoying)
• Need to be treated differently
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Central values

• CI construction is data reduction
• Condense data into 1 or 2 numbers
• Many variations: which CL, one- or two-sided, …
• Choice limits future uses of data
• Which values are “the best”?

• Add more information by also providing a point estimate
• E.g. Maximum Likelihood Estimator (MLE), Maximum A-

posteriori Probability (MAP), …
• Does not need to be inside CI! (usually is though)

• Interval w/o central value is useful, e.g. limits
• Central value w/o error bar is useless
• Is deviation of 10% compatible? 0.1%?
• Better than nothing? Probably add an error bar in your head
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Gaussian approximation

• Even with point estimate, CI only provides single CL
• What if we want to check for stronger deviations?
• Would need to specify full probability/likelihood function

• Gaussian approximation
• Assume a normal distribution of

• Probability of true value (Bayesian)
• Point estimates around true value (Frequentist) 

• Completely described by exp. value & variance

 
• Can easily construct CI of any CL:

• 68%:
• 95%:
• 99.7%:
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Why does this work?

• Where do CL values come from?
• Integrating probability over normal distribution
• Two-sided 1 std = 68% CL only true for normal!
• E.g. uniform distribution
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Relation to chi-squared dist.

• Squared deviation is Chi-squared distributed with k=1
• Assuming normal distribution!
• Integral 0 – 1 = 68%
• Integral 0 – 4 = 95%
• Integral 0 – 9 = 99.7%
• …
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Multiple parameters

• What if comparing more than one parameter?
• Multiple XSEC bins, oscillation angles/masses, …

• Confidence/credible
1D interval → N-dim region

 
• In principle infinite ways to 

define confidence/credible
region in N dimensions
• Expand shape around central value until contains desired CL?

• What shape? Sphere? Box? Heart shape?

• All “correct” as long as CL is right (though not optimal)
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Multivariate Gauss

• Uncorrelated N-dim Gaussian approximation
• Uncertainties on all parameters are independent
• N mean values, N variances

• Sum of normed squared distances ~ χ2(k=N)
• Definition of χ2!
• Mode = k – 2, Mean = k

• That is why “reduced χ2”
should be roughly 1!

• σ(χ2) = sqrt(2k)
• The higher N, the more

unlikely a larger sum/N becomes!
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Multivariate Gauss

• Look up value of χ2(k) distribution 
where integral = CL
• Compare to sum of squared deviations
• Error bar → error ellipse in N-dim 

parameter space
• Sphere in normalised parameter space
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Correlations

• What about correlated variables?
• Assume multivariate normal distribution
• Fully described by N mean values, N variances, and N*(N-1)/2 

covariances → N mean values & N*N covariance matrix
 

• Mahalanobis distance (“the chi-squared”)
• Generalisation of sum of squared deviations for correlated 

variables
 

• Chi2 distributed k=N
 
• Construct CI with chi2 quantile
• N-dim ellipse in parameter space
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Multivariate Gauss

• Look up value of chi2(k) distribution
where integral = CL
• Compare to squared Mahalanobis

distance
• Error ellipse → rotated error ellipse
• Can no longer judge fit by looking at plot!  → Give us the χ2!
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Summary II

• Error bars are often confidence/credible intervals
• Former cover truth in CL instances of repeated experiments
• Latter cover CL of posterior probability

• Can convey more information by Gaussian approx.
• Assumptions about shape of uncertainty!
• Construct CI with arbitrary CL w/o reanalysing the data

• Mahalanobis distance & quantiles of chi2 distribution
• Need full covariance if uncertainties are correlated!

• Homework
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Repeat 20 times: “I will provide a full covariance matrix 
and always quote ‘the chi-squared’ in plots when 

dealing with correlated data points.”



Constructing a CI

• Bayesian straight forward(ish)
• Assume a prior (a can of worms for another workshop)
• Update prior with data and Bayes’ theorem
• “Cut out” area of posterior with desired credible level

• Many ways to do this, e.g. central, shortest possible, one-sided, …
• Why not provide full (parametrised) posterior?

• Frequentist more complicated
• Devise rule for including or excluding a point in parameter 

space based on the data
• Rule must accept true parameter in CL of cases, no matter 

what the real parameter actually is
• Necessary for correct CI, but not the only desirable property
• Consider ignoring data, randomly accepting or rejecting full parameter 

space
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Bayesian inference

• Example: Coin flip
• Parameter: P(H)
• Prior: p(P(H))
• Experiment:

• Throw N times
• Get N(H) times heads
• Binomial distribution

• Apply Bayes’ theorem
• Prior probability of N(H)

can be seen as normalisation const.
• Posterior p’(P(H)) can get complicated

• Using posterior as prior
for next measurement?

• No closed form of p(x)?

08/06/2024 Lukas Koch 19



Conjugate priors

• Special class of prior probability functions
• Posterior probability is same class of function as prior
• p(P(H)) = f(a,b,c,…)
• p’(P(H)) = f(a’,b’,c’,…)
• Rules to update hyperparameters a,b,c,… → a’,b’,c’,… with data

• Update rules much simpler than calculating Bayes’!
• Depends on data process!
• E.g. for Binomial process

(coin toss) → Beta distribution

• Update rules
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Markov Chain Monte Carlo 

• Analytical solutions work well for “small” problems
• “Big” problems (lots of parameters, complicated 

likelihoods) easier to solve with numerical methods
• Markov chain Monte Carlo (MCMC)
• Randomly throw parameter values
• Accept according to rules based on

likelihood and prior
• Result is sample of parameters

from posterior distribution

• Use sample to fill histograms,
fit functions, find central value,
etc…
• Lots of complicating details…
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Frequentist inference

• Significance test
• Hypothesis = proposition about stochastic process of data

• E.g. binomial distribution with P(H) = 0.49
• Not a random variable!

• Test statistic = function of data, measuring “extremeness”
• Example: standard deviation (z-score), Mahalanobis distance

• p-value = probability of getting “more extreme” result 
assuming the hypothesis is correct

• When p-value < significance = α = 1 – CL
• Exclude hypothesis from CI
• By construction will happen randomly at rate alpha

• Critical value: Test statistic where p-value = α
• Critical region: Area of test statistic p-value <= α 
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Gaussian example

• Example: Speed control
• Measure a vehicles speed once

• Know value is normal distributed around truth

• Choose z-score (“sigmas”) as test statistic
• 99% CL in Z = +/- 2.58

• Naïve approach:

• How does this work?
• v is not a random

variable!
• Bayesian propaganda?
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Gaussian example

• Need to define a critical region for each possible value
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Gaussian example

• Need to define a critical region for each possible value
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Gaussian example

• Check for which parameters the result is in critical region
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Gaussian example

• Accepted region happens to be same as naïve solution 
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Gaussian example

• Lots of symmetry in this Gaussian problem
• PDF symmetric around  mean
• Parameter corresponds directly to data
• Data variance is constant

• When treating estimated
data PDF as PDF for
parameter we get the
correct answers by accident!
• Can do the wrong things

for the wrong reasons and
still get a correct answer
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Poisson example

• Example: Speeding rate
• How many speeders are there per year
• Count number of speeding tickets N = 25

• Decide: sufficiently Gaussian, use z-score again
• Naïve solution:

• How does it hold up this time?
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Poisson example

• Need to define a critical region for each possible value
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Poisson example

• Expected data variance depends on parameter value!
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Poisson example

• Check for which parameters the result is in critical region
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Poisson example

• Width depends on parameter, so symmetry broken!
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Poisson example

• To find CI limits, solve

• CI is shifted by 0.5 compared to naïve solution
• It is also slightly wider

• Point estimate is still valid though!

• Even better: use Poisson likelihood instead of z-score
• The variance of data at the parameter point estimate

is not the same as the variance of the parameter!
• The test statistic has to be calculated for each parameter point
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Summary III

• Bayesian CI are constructed by updating a prior using 
Bayes‘ theorem
• Conjugate priors can be used to make updating very easy
• MCMC can be used if no closed form is available
• Many ways to “cut” CI with right CL out of posterior

• Frequentist CI by defining a critical data region for each 
possible parameter value a priori (Neyman construction)
• All values with measured data in crit. region are excluded
• Often data is not used directly → test statistic as intermediary
• Many ways to define critical region

• Homework
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How does the speeding result change when looking for 
99% CL lower limit, i.e. one sided z-score test?



Choosing a test statistic

• More desirable properties for CI construction
• Use data efficiently

• Use all the information
• Maximise test “power” = probability to exclude an untrue 

parameter from CI
• Aim for short CI

• To quantify power, need alternative hypothesis to 
evaluate probability → Hypothesis tests
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Hypothesis tests

• H0 = hypothesis we want to test
• H1 = alternative hypothesis needed to evaluate β

• Select test statistic that for given α minimises β
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Likelihood ratios

• Simple hypothesis = w/o any free parameters
• Includes hypothesis where you fixed all parameters!

• Likelihood ratio proven to be most powerful test statistic
(Neyman–Pearson lemma)

• Alternative expression as log likelihood ratio
• Easier to compute with (additions instead of multiplications)

• Need to determine critical value of ratio for every 
possible parameter point we want to exclude
• E.g. MC simulation of distribution assuming H0
• Reject H0 at low (!) likelihood ratios
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Likelihood ratios

• Simple hypothesis = w/o any free parameters
• Includes hypothesis where you fixed all parameters!

• Likelihood ratio proven to be most powerful test statistic
(Neyman–Pearson lemma)

• Alternative expression as log likelihood ratio
• Easier to compute with (additions instead of multiplications)

• Need to determine critical value of ratio for every 
possible parameter point we want to exclude
• E.g. MC simulation of distribution assuming H0
• Reject H0 at low (!) likelihood ratios
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Composite hypotheses

• Composite hypothesis = with free parameters

• Can use ratio of maximum likelihoods as test statistic
• Compare best fit point of H0 with best fit point of H1

• Not guaranteed to be most powerful test
• But it is under certain circumstances (Karlin–Rubin theorem)

• Usually considered to be pretty good

• Finding critical value becomes very hard in general case
• What values to assume for free parameters in MC?
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Wilks’ theorem

• Under some (generic) conditions
• H0 is subset of H1
• “Data is good enough”, e.g. MLE are norm. distr.
• If point on H0 is true

• Likelihood ratio is χ2 distributed

• Can use χ2 quantiles to calculate critical values
• No need for time consuming MC
• Reason why ndof = N(data points) – N(fit parameters) for GOF

• H0 = Expectation value calculated from fit parameters
• H1 = Expectation values of all data free

• Bad “chi-squared” → we say the data does not fit
• Actually a hypothesis test!
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Used for CI construction

• When constructing CI have (at least) two choices for H1
• H1 = most general hypothesis possible (ndof = ndata)
• H1 = H0 but with all parameters free (ndof = nparam)

• In both cases ndof(H0) < ndof(H1)
• (some) parameters fixed, where we want to check whether 

they are inside the CI or not

• Example: Linear fit to 4 points
• H0: y = ax + b; a=1, b=4; ndof = 0
• H1a: y = ax + b; a, b; ndof = 2
• H1b: y1, y2, y3, y4; ndof = 4

• Case a: Will always find accepted region

• Case b: CI might be empty (if fit is bad)
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Normal approximation again

• Can provide more than just CI again (e.g. what fitters do)
• Scan log-likelihood surface

• Find best fit (max likelihood, MLE) point

• Use curvature around MLE (or other technique?) to 
approximate surface as quadratic function
• In case of Gaussian uncertainties w/ fixed variance, this is exact!

• Return covariance matrix S and MLE so that

• RHS is chi-square distributed with ndof = nparam
• LHS looks like Mahalanobis distance!

• Can use MLE and covariance to construct CI
• As if it described a PDF of the parameters
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Summary IV

• Defining an alternative H1 and Type II error helps us 
decide on a test statistic
• Minimise P(Type II) for a given P(Type I)

• Likelihood ratios are usually a very good choice
• When                                (and other requirements)

• Likelihood surface (function of parameters) often 
approximated as quadratic function → covariance matrix
• Gaussian approximation → symmetry → easy CI construction

• Homework
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Show that the a two-sided z-score and likelihood ratio 
tests are equivalent for normally distributed data.



Propagation of uncertainty

• Have uncertainty of parameters covered
• How to propagate to uncertainty of prediction?
• Monotone 1D functions → easy
• f(CI edges)

• Linear function → even better
• Gaussian approx. → new Gaussian

• N-dim linear combination
• N-dim Gauss → M-dim new Gauss
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If M > N, new
covariance will
be degenerate!



Local linear approximation

• Non-linear function, but “straight” on scale of uncert.
• Approximate as linear (Taylor expansion)

• Rest stays same as in linear case

• No one ever checks “straightness”
• Coverage tests are important!
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Monte Carlo propagation

• Function difficult to differentiate?
• Throw parameters
• Calculate function for each throw
• Extract uncertainty on prediction from sample

• Always possible in Bayesian statistics
• Parameter uncertainty is probability distribution

• Frequentist? Harder to justify
• Uncertainty describes likelihood, not a PDF

• But only ratios matter!
• Does the right thing in linear case
• Distorts (relative) likelihoods

when not linear
• What we want:
• What we get:
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Summary V

• Propagation of uncertainty works as expected
in Ideal Linear Normal Land
• Just use “regular” error propagation

• Analytical or MC
• Works in Frequentist and Bayesian

• When function is not linear enough
• Bayesian MC method still works
• No simple solution for Frequentists (I am aware of)

• At least not in the general N-dimensional case
• when monotone, can calculate                or translate CI edges directly

• Homework
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We measured the sides of a cube to be (2 +- 0.3) mm. 
What are the uncertainty and CI on the volume?

At what significance have we shown that volume > 0?



Summary Summary

• Statistics can be hard
• Understanding will lead to better physics results

• Blindly following “rules” can lead to mistakes
• Understanding comes with taking this seriously over and over
• Question what you are doing until you know it makes sense!

• Frequentist probabilities are strictly defined, “objective”
• Though talking about parameters/uncertainties is a pain

• Bayesian probability definition is softer, “subjective”
• Much easier to think/talk about

• Further reading
• Wikipedia
• PDG Particle Data Booklet
• Cowan (1998) – Statistical Data Analysis
• Bohm – Introduction to Statistics and Data Analysis for Physicist (free PDF!)
• Papers/books referenced in the above

• Can be dense, conventions/lingo differs between stats and physics
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