

Statistics 101

NuSTEC Summer School 2024

- Example: Coin flip
- Probability of throwing heads P(H)
 - Single throw does not tell us much
 - Ratio for lots of throws

$$P(H) = \lim_{N \to \infty} \frac{N_H}{N}$$

- Frequentist definition
- Probability of coin being fair

fair
$$\equiv (0.5 - \epsilon \le P(H) \le 0.5 + \epsilon)$$

• Frequentist?

$$P(\text{fair}) = \lim_{N \to \infty} \frac{N_{\text{fair}}}{N} = \begin{cases} 1 & \text{if coin is fair} \\ 0 & \text{if coin is not fair} \end{cases}$$

- No matter how often we throw/measure, coin is fair or not
- We don't know which!

G

IOHANNES

Bayesian probability

- Bayesian definition: Probability is interpreted as
 - reasonable expectation
 - representing a state of knowledge
 - quantification of a personal (!) belief
- Allows assigning arbitrary probability of coin being fair $P({\rm fair}) \in [0,1]$
- If P is subjective, what does it mean exactly?
 - $P = 1 \rightarrow$ Something is true
 - $P = 0 \rightarrow$ Something is false
 - $P = 0.3 \rightarrow ???$
- Fair bet: Will not lose (or win) money in the long term
 - Considering all information, at what odds would you bet?
 - "Semi frequentist" over all instances when you apply Bayesian stats?

JOHANNES GL

Mathematical probability

- Frequentist vs. Bayesian deals with interpretation
 - Influences what we can consider a random variable
- Mathematical rules are the same
- Probability (Kolmogorov) axioms
 - P are real numbers > 0
 - Total probability = 1
 - P of mutually exclusive events is additive

$$egin{aligned} P(E) \in \mathbb{R}, P(E) \geq 0 & orall E \in F \ P(\Omega) = 1. \ P\left(igcup_{i=1}^{\infty} E_i
ight) = \sum_{i=1}^{\infty} P(E_i). \end{aligned}$$

JOHANNES

- Conditional probability \rightarrow Bayes' theorem $P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \qquad P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}.$
 - Applies to both Bayésian and Frequentist random variables
 - "Fair or not" is not a random variable in Frequentist interpretation!

Probability density

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU

- What if outcome of experiment lies on continuum?
- Define Probability Density Function (PDF) f (or sometimes p) so that

- Note that P[X = 40] = 0
 - Infinitely many points on x, P of single point = 0

Summary I

- Two different interpretations of probability
 - Frequentist \rightarrow Probability is frequency limit
 - Bayesian \rightarrow Probability is certainty or reasonable expectation
- Differ in what can be considered a random variable
- Same rules for calculations with random variables
 - Bayes' theorem works for both!
- Homework: Frequentist probability or not?

P(rolling 1 on D20), P(rolling 1 on next D20 roll), P(a randomly picked summer day being sunny), P(yesterday being sunny), P(tomorrow being sunny), P(people actually doing their homework)

IOHANNES GUTENBERG

What are error bars?

- Bars in plots can be all sorts of things
 - Bin widths
 - Poisson variance estimate sqrt(N)
 - ???
 - Read the paper
 - Specify in your paper!
- Bayesian \rightarrow Credible Interval
 - Parameter is random variable
 - Probability of true value within = Credibility Level (often 68%)
- Frequentist → Confidence Interval
 - Parameter is fixed (!) but unknown
 - Interval edges are random variables
 - Probability of CI covering truth = Confidence Level (often 68%)
 - No matter what the true value is
- Not the same!
 - E.g. empty or unphysical confidence intervals are OK! (albeit annoying)
 - Need to be treated differently

JOHANNES GUTENBERG

JGU

- CI construction is data reduction
 - Condense data into 1 or 2 numbers
 - Many variations: which CL, one- or two-sided,
 - Choice limits future uses of data
 - Which values are "the best"?

IOHANNES

- Add more information by also providing a point estimate
 - E.g. Maximum Likelihood Estimator (MLE), Maximum Aposteriori Probability (MAP), ...
 - Does not need to be inside CI! (usually is though)
- Interval w/o central value is useful, e.g. limits
- Central value w/o error bar is useless
 - Is deviation of 10% compatible? 0.1%?
 - Better than nothing? Probably add an error bar in your head

Gaussian approximation

- Even with point estimate, CI only provides single CL
 - What if we want to check for stronger deviations?
 - Would need to specify full probability/likelihood function
- Gaussian approximation
 - Assume a normal distribution of
 - Probability of true value (Bayesian)
 - Point estimates around true value (Frequentist)
 - Completely described by exp. value & variance

$$\mu = \langle x \rangle = \int x p(x) dx$$
 $\sigma^2(x) = \int (x - \langle x \rangle)^2 p(x) dx$

- Can easily construct CI of any CL:
 - 68%: $\mu \pm \sigma$
 - 95%: $\mu \pm 2\sigma$
 - 99.7%: $\mu \pm 3\sigma$

JOHANNES GU

Why does this work?

JGU

- Where do CL values come from?
- Integrating probability over normal distribution
- Two-sided 1 std = 68% CL only true for normal!

Relation to chi-squared dist.

JOHANNES GUTENBERG

 $(x - \langle x \rangle)^2 / \sigma^2 \sim \chi_1^2$

- Squared deviation is Chi-squared distributed with k=1
 - Assuming normal distribution!
 - Integral 0 1 = 68%
 - Integral 0 4 = 95%
 - Integral 0 9 = 99.7%

•

. . .

- What if comparing more than one parameter?
 - Multiple XSEC bins, oscillation angles/masses, ...
- Confidence/credible 1D interval \rightarrow N-dim region

- In principle infinite ways to define confidence/credible region in N dimensions
 - Expand shape around central value until contains desired CL?
 - What shape? Sphere? Box? Heart shape?
- All "correct" as long as CL is right (though not optimal)

JOHANNES GU

Multivariate Gauss

- Uncorrelated N-dim Gaussian approximation
 - Uncertainties on all parameters are independent
 - N mean values, N variances
- Sum of normed squared distances ~ $\chi^2(k=N)$
 - Definition of χ²!
 - Mode = k 2, Mean = k
 - That is why "reduced χ²" should be roughly 1!
 - σ(χ²) = sqrt(2k)
 - The higher N, the more unlikely a larger sum/N becomes!

JOHANNES GUTENBERG

IG|U

- Look up value of $\chi^2(k)$ distribution where integral = CL
- Compare to sum of squared deviations
- Error bar → error ellipse in N-dim parameter space
 - Sphere in normalised parameter space

JGU

JOHANNES GUTENBERG

- JOHANNES GUTENBERG UNIVERSITÄT MAINZ
- JG

- What about correlated variables?
- Assume multivariate normal distribution
 - Fully described by N mean values, N variances, and N*(N-1)/2 covariances → N mean values & N*N covariance matrix

 $oldsymbol{\mu} = \mathrm{E}[\mathbf{X}] = (\mathrm{E}[X_1], \mathrm{E}[X_2], \dots, \mathrm{E}[X_k])^{\mathbf{T}}, \ \ \Sigma_{i,j} := \mathrm{E}[(X_i - \mu_i)(X_j - \mu_j)] = \mathrm{Cov}[X_i, X_j]$

- Mahalanobis distance ("the chi-squared")
 - Generalisation of sum of squared deviations for correlated variables

$$D_M(ec{x}) = \sqrt{(ec{x} - ec{\mu})^T S^{-1} (ec{x} - ec{\mu})}.$$

- Chi2 distributed k=N $D_M^2 \sim \chi_N^2$
- Construct CI with chi2 quantile
 - N-dim ellipse in parameter space

- Look up value of chi2(k) distribution where integral = CL
- Compare to squared Mahalanobis distance
- Error ellipse \rightarrow rotated error ellipse
 - Can no longer judge fit by looking at plot! \rightarrow Give us the χ^2 !

JOHANNES GUTENBERG

JGU

Summary II

- Error bars are often confidence/credible intervals
 - Former cover truth in CL instances of repeated experiments
 - Latter cover CL of posterior probability
- Can convey more information by Gaussian approx.
 - Assumptions about shape of uncertainty!
 - Construct CI with arbitrary CL w/o reanalysing the data
 - Mahalanobis distance & quantiles of chi2 distribution
 - Need full covariance if uncertainties are correlated!
- Homework

Repeat 20 times: "I will provide a full covariance matrix and always quote 'the chi-squared' in plots when dealing with correlated data points."

IOHANNES GUTENBERG

Constructing a CI

- Bayesian straight forward(ish)
 - Assume a prior (a can of worms for another workshop)
 - Update prior with data and Bayes' theorem
 - "Cut out" area of posterior with desired credible level
 - Many ways to do this, e.g. central, shortest possible, one-sided, ...
 - Why not provide full (parametrised) posterior?
- Frequentist more complicated
 - Devise rule for including or excluding a point in parameter space based on the data
 - Rule must accept true parameter in CL of cases, no matter what the real parameter actually is
 - Necessary for correct CI, but not the only desirable property
 - Consider ignoring data, randomly accepting or rejecting full parameter space

JOHANNES GUTENBERG

G

Bayesian inference

- Example: Coin flip
 - Parameter: P(H)
 - Prior: p(P(H))
 - Experiment:
 - Throw N times
 - Get N(H) times heads
 - Binomial distribution
- Apply Bayes' theorem
 - Prior probability of N(H) can be seen as normalisation const.
 - Posterior p'(P(H)) can get complicated
 - Using posterior as prior for next measurement?
 - No closed form of p(x)?

50% 500

 $p(x \mid heta) \, p(heta)$

 $p(x \mid heta) \, p(heta)$

 $\int_{\theta} p(x,\theta) \, d\theta$

 $p(x \mid heta) \, p(heta)$

 $\overline{\int_{\scriptscriptstyle A} p(x \mid heta) \, p(heta) \, d heta}$

 $p(\theta \mid x) =$

Conjugate priors

- Special class of prior probability functions
 - Posterior probability is same class of function as prior
 - p(P(H)) = f(a,b,c,...)
 - p'(P(H)) = f(a',b',c',...)
 - Rules to update hyperparameters a,b,c,... \rightarrow a',b',c',... with data
- Update rules much simpler than calculating Bayes'!
- Depends on data process!
 - E.g. for Binomial process (coin toss) → Beta distribution

$$rac{x^{lpha-1}(1-x)^{eta-1}}{\mathrm{B}(lpha,eta)}$$

• Update rules

JOHANNES GUTENBERG

IGIU

08/06/2024

Markov Chain Monte Carlo

- Analytical solutions work well for "small" problems
- "Big" problems (lots of parameters, complicated likelihoods) easier to solve with numerical methods
- Markov chain Monte Carlo (MCMC)
 - Randomly throw parameter values
 - Accept according to rules based on likelihood and prior
 - Result is sample of parameters from posterior distribution
- Use sample to fill histograms, fit functions, find central value, etc...
- Lots of complicating details...

IOHANNES

Frequentist inference

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Significance test
 - Hypothesis = proposition about stochastic process of data
 - E.g. binomial distribution with P(H) = 0.49
 - Not a random variable!
 - Test statistic = function of data, measuring "extremeness"
 - Example: standard deviation (z-score), Mahalanobis distance
 - p-value = probability of getting "more extreme" result assuming the hypothesis is correct
- When p-value < significance = α = 1 CL
 - Exclude hypothesis from CI
 - By construction will happen randomly at rate alpha
- Critical value: Test statistic where p-value = α
- Critical region: Area of test statistic p-value <= α

- Example: Speed control
 - Measure a vehicles speed once

 $\hat{v} = 55 \,\mathrm{km/h}$

Know value is normal distributed around truth

 $\sigma = 2 \,\mathrm{km/h}$

- Choose z-score ("sigmas") as test statistic
 - 99% CL in Z = +/- 2.58
- Naïve approach:

 $v = \hat{v} \pm 2.58\sigma = (55 \pm 5.16) \,\mathrm{km/h}$

- How does this work?
- v is not a random variable!
- Bayesian propaganda?

Z Scores

T Scores

JOHANNES GUTENBERG

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

• Need to define a critical region for each possible value

Possible experimental values x

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

• Need to define a critical region for each possible value

Possible experimental values x

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

• Check for which parameters the result is in critical region

Possible experimental values x

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

• Accepted region happens to be same as naïve solution

Possible experimental values x

- Lots of symmetry in this Gaussian problem
 - PDF symmetric around mean
 - Parameter corresponds directly to data
 - Data variance is constant
- When treating estimated data PDF as PDF for parameter we get the correct answers by accident!
- Can do the wrong things for the wrong reasons and still get a correct answer

JOHANNES GUTENBERG

IGIU

- Example: Speeding rate
 - How many speeders are there per year
 - Count number of speeding tickets N = 25
- Decide: sufficiently Gaussian, use z-score again
- Naïve solution:

$$\begin{aligned} \hat{\lambda} &= 25\\ \hat{\sigma} &= \sqrt{\hat{\lambda}} = 5\\ \lambda &= 25 \pm 5 \end{aligned}$$

• How does it hold up this time?

JOHANNES GUTENBERG

IG|U

• Need to define a critical region for each possible value

Possible experimental values x

• Expected data variance depends on parameter value!

Possible experimental values x

• Check for which parameters the result is in critical region

Possible experimental values x

• Width depends on parameter, so symmetry broken!

Possible experimental values x

• To find CI limits, solve

$$x \pm \sqrt{x} = 25$$
$$x = \frac{51 \mp \sqrt{101}}{2} = 25.5 \mp 5.02$$

IOHANNES

- CI is shifted by 0.5 compared to naïve solution
 - It is also slightly wider
- Point estimate is still valid though!

$$\lambda = 25^{+5.5}_{-4.5}$$

- Even better: use Poisson likelihood instead of z-score
- The variance of data at the parameter point estimate is not the same as the variance of the parameter!
 - The test statistic has to be calculated for each parameter point

- Bayesian CI are constructed by updating a prior using Bayes' theorem
 - Conjugate priors can be used to make updating very easy
 - MCMC can be used if no closed form is available
 - Many ways to "cut" CI with right CL out of posterior
- Frequentist CI by defining a critical data region for each possible parameter value *a priori* (Neyman construction)
 - All values with measured data in crit. region are excluded
 - Often data is not used directly \rightarrow test statistic as intermediary
 - Many ways to define critical region
- Homework

How does the speeding result change when looking for 99% CL lower limit, i.e. one sided z-score test?

IOHANNES GUTENBERG

Choosing a test statistic

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- More desirable properties for CI construction
 - Use data efficiently
 - Use all the information
 - Maximise test "power" = probability to exclude an untrue parameter from CI
 - Aim for short Cl

		Actual scenario	
		H ₀ true	H_0 is false
Decision	Accept H ₀	Correct Decision	Type-II error: β Accepting H ₀ when it is false
	Reject H ₀	Type-I error: α Rejecting H ₀ when it is true	Correct Decision 1-β Power of test

 To quantify power, need alternative hypothesis to evaluate probability → Hypothesis tests

JGU

- H0 = hypothesis we want to test
- H1 = alternative hypothesis needed to evaluate β

• Select test statistic that for given α minimises β

- Simple hypothesis = w/o any free parameters
 - Includes hypothesis where you fixed all parameters!
- Likelihood ratio proven to be most powerful test statistic (Neyman–Pearson lemma)

$$egin{split} \mathcal{L}(heta \mid x) &= p_{ heta}(x) = P_{ heta}(X=x), \ \Lambda(x) &\equiv rac{\mathcal{L}(heta_0 \mid x)}{\mathcal{L}(heta_1 \mid x)} \end{split}$$

- Alternative expression as log likelihood ratio
 - Easier to compute with (additions instead of multiplications)

$$\lambda = \ln \Lambda$$

- Need to determine critical value of ratio for every possible parameter point we want to exclude
 - E.g. MC simulation of distribution assuming H0
 - Reject H0 at low (!) likelihood ratios

- Simple hypothesis = w/o any free parameters
 - Includes hypothesis where you fixed all parameters!
- Likelihood ratio proven to be most powerful test statistic (Neyman-Pearson lemma) No standard nomenclature

IOHANNES

$$egin{aligned} \mathcal{L}(heta \mid x) &= p_{ heta}(x) = P_{ heta}(X = x), \ \Lambda(x) &\equiv rac{\mathcal{L}(heta_0 \mid x)}{\mathcal{L}(heta_1 \mid x)} \end{aligned}$$

- Alternative expression as log likelihood ratio
 - Easier to compute with (additions instead of multiplications)

 $\lambda = \ln \Lambda$

- Need to determine critical value of ratio for every possible parameter point we want to exclude
 - E.g. MC simulation of distribution assuming HO
 - Reject H0 at low (!) likelihood ratios

Composite hypotheses

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

• Composite hypothesis = with free parameters

 $H_{0/1}(\boldsymbol{\theta}_{0/1})$

- Can use ratio of maximum likelihoods as test statistic
 - Compare best fit point of H0 with best fit point of H1

$$\lambda = \ln \frac{\sup_{\theta_0} \mathcal{L}(H_0(\theta_0))}{\sup_{\theta_1} \mathcal{L}(H_1(\theta_1))}$$

- Not guaranteed to be most powerful test
 - But it is under certain circumstances (Karlin-Rubin theorem)
 - Usually considered to be pretty good
- Finding critical value becomes very hard in general case
 - What values to assume for free parameters in MC?

Wilks' theorem

- Under some (generic) conditions
 - H0 is subset of H1
 - "Data is good enough", e.g. MLE are norm. distr.
 - If point on H0 is true
- Likelihood ratio is χ^2 distributed

$$-2\lambda \sim \chi^2(k = \|\boldsymbol{\theta}_1\| - \|\boldsymbol{\theta}_0\|)$$

- Can use χ^2 quantiles to calculate critical values
 - No need for time consuming MC
 - Reason why ndof = N(data points) N(fit parameters) for GOF
 - H0 = Expectation value calculated from fit parameters
 - H1 = Expectation values of all data free
 - Bad "chi-squared" \rightarrow we say the data does not fit
 - Actually a hypothesis test!

 $H_0(\boldsymbol{\theta}_0) \subset H_1(\boldsymbol{\theta}_1)$

 $= \ln \frac{\sup_{\boldsymbol{\theta}_0} \mathcal{L}(H_0(\boldsymbol{\theta}_0))}{\sup_{\boldsymbol{\theta}_1} \mathcal{L}(H_1(\boldsymbol{\theta}_1))}$

0.5 0.4 0.3 0.2 0.1 0.0

nparam

IGII

Used for CI construction

- When constructing CI have (at least) two choices for H1
 - H1 = most general hypothesis possible (ndof = ndata)
 - H1 = H0 but with all parameters free (ndof = nparam)
- In both cases ndof(H0) < ndof(H1)
 - (some) parameters fixed, where we want to check whether they are inside the CI or not
- Example: Linear fit to 4 points
 - H0: y = ax + b; a=1, b=4; ndof = 0
 - H1a: y = ax + b; a, b; ndof = 2
 - H1b: y1, y2, y3, y4; ndof = 4
- Case a: Will always find accepted region $a = \hat{a}, b = \hat{b} \rightarrow -2\lambda = 0$
- Case b: CI might be empty (if fit is bad)

IOHANNES

IG

Normal approximation again

- Can provide more than just CI again (e.g. what fitters do)
 - Scan log-likelihood surface

 $-2\ln\mathcal{L}_0(\boldsymbol{\theta}) [+2\ln\mathcal{L}_1]$

- Find best fit (max likelihood, MLE) point
- Use curvature around MLE (or other technique?) to approximate surface as quadratic function
 - In case of Gaussian uncertainties w/ fixed variance, this is exact!
- Return covariance matrix S and MLE so that

 $(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T S^{-1}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \approx -2\ln \mathcal{L}_0(\boldsymbol{\theta}) - (-2\ln \mathcal{L}_0(\hat{\boldsymbol{\theta}}))$

- RHS is chi-square distributed with ndof = nparam
- LHS looks like Mahalanobis distance!

$$D_M^2 \sim \chi_N^2$$

- Can use MLE and covariance to construct CI
 - As if it described a PDF of the parameters

JOHANNES

IGIL

- Defining an alternative H1 and Type II error helps us decide on a test statistic
 - Minimise P(Type II) for a given P(Type I)
- Likelihood ratios are usually a very good choice
- When $H_0(\theta_0) \subset H_1(\theta_1)$ (and other requirements) $-2\lambda \sim \chi^2(k = \|\theta_1\| - \|\theta_0\|)$
- Likelihood surface (function of parameters) often approximated as quadratic function → covariance matrix
 - Gaussian approximation \rightarrow symmetry \rightarrow easy CI construction
- Homework

Show that the a two-sided z-score and likelihood ratio tests are equivalent for normally distributed data.

IOHANNES GUTENBERG

Propagation of uncertainty

- Have uncertainty of parameters covered
- How to propagate to uncertainty of prediction?
- Monotone 1D functions \rightarrow easy
 - f(Cl edges)
- Linear function \rightarrow even better
 - Gaussian approx. \rightarrow new Gaussian

$$\hat{y} = f(\hat{x}), \quad \sigma_y = \frac{\mathrm{d}y}{\mathrm{d}x}\sigma_\theta = a\sigma_x$$

- N-dim linear combination
 - N-dim Gauss \rightarrow M-dim new Gauss

$$\begin{aligned} \boldsymbol{y} &= A\boldsymbol{x} + \boldsymbol{b} \\ \hat{\boldsymbol{y}} &= A\hat{\boldsymbol{x}} + \boldsymbol{b} \\ \Sigma^{y} &= A\hat{\boldsymbol{x}} + \boldsymbol{b} \end{aligned} \qquad \Sigma^{x} = \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} & \sigma_{13} & \cdots \\ \sigma_{12} & \sigma_{2}^{2} & \sigma_{23} & \cdots \\ \sigma_{13} & \sigma_{23} & \sigma_{3}^{2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \Sigma_{11}^{x} & \Sigma_{12}^{x} & \Sigma_{13}^{x} & \cdots \\ \Sigma_{12}^{x} & \Sigma_{22}^{x} & \Sigma_{23}^{x} & \cdots \\ \Sigma_{13}^{x} & \Sigma_{23}^{x} & \Sigma_{33}^{x} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \end{aligned}$$

be degenerate!

JOHANNES

Local linear approximation

- Non-linear function, but "straight" on scale of uncert.
 - Approximate as linear (Taylor expansion)

$$oldsymbol{y} = A \cdot (oldsymbol{x} - \hat{oldsymbol{x}}) + oldsymbol{b}$$
 $oldsymbol{b} = oldsymbol{y}(\hat{oldsymbol{x}}), \quad A_{ij} = \left.rac{\partial y_i}{\partial x_j}
ight|_{oldsymbol{\hat{x}}}$

• Rest stays same as in linear case

$$\Sigma^{y} = A\Sigma^{x}A^{T}$$
$$\sigma_{y_{k}}^{2} = \Sigma_{kk}^{y} = \sum_{i,j} \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{k}}{\partial x_{j}} \Sigma_{ij}^{x}$$

- No one ever checks "straightness"
 - Coverage tests are important!

IOHANNES

IGU

Monte Carlo propagation

- Function difficult to differentiate?
 - Throw parameters
 - Calculate function for each throw
 - Extract uncertainty on prediction from sample
- Always possible in Bayesian statistics
 - Parameter uncertainty is probability distribution
- Frequentist? Harder to justify
 - Uncertainty describes likelihood, not a PDF

 $\mathrm{d}y$

- But only ratios matter!
- Does the right thing in linear case
- Distorts (relative) likelihoods when not linear
 - What we want:
 - What we get:

$$\mathcal{L}(y) = \mathcal{L}(x(y))$$
$$\frac{\mathrm{d}x}{\mathrm{d}x}(y)\mathcal{L}(x(y))$$

JOHANNES GL

Nomal

Summary V

- Propagation of uncertainty works as expected in Ideal Linear Normal Land
 - Just use "regular" error propagation
 - Analytical or MC
 - Works in Frequentist and Bayesian
- When function is not linear enough
 - Bayesian MC method still works
 - No simple solution for Frequentists (I am aware of)
 - At least not in the general N-dimensional case
 - when monotone, can calculate $\mathcal{L}(x(y))$ or translate CI edges directly

Homework

We measured the sides of a cube to be (2 +- 0.3) mm. What are the uncertainty and CI on the volume? At what significance have we shown that volume > 0?

JOHANNES GU

Summary Summary

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- Statistics can be hard
- Understanding will lead to better physics results
 - Blindly following "rules" can lead to mistakes
 - Understanding comes with taking this seriously over and over
 - Question what you are doing until you know it makes sense!
- Frequentist probabilities are strictly defined, "objective"
 - Though talking about parameters/uncertainties is a pain
- Bayesian probability definition is softer, "subjective"
 - Much easier to think/talk about
- Further reading
 - Wikipedia
 - PDG Particle Data Booklet
 - Cowan (1998) Statistical Data Analysis
 - Bohm Introduction to Statistics and Data Analysis for Physicist (free PDF!)
 - Papers/books referenced in the above
 - Can be dense, conventions/lingo differs between stats and physics