Statistics 101

NuSTEC Summer School 2024

- Example: Coin flip
- Probability of throwing heads $\mathrm{P}(\mathrm{H})$
- Single throw does not tell us much
- Ratio for lots of throws

$$
P(H)=\lim _{N \rightarrow \infty} \frac{N_{H}}{N}
$$

- Frequentist definition
- Probability of coin being fair

$$
\text { fair } \equiv(0.5-\epsilon \leq P(H) \leq 0.5+\epsilon)
$$

- Frequentist?

$$
P(\text { fair })=\lim _{N \rightarrow \infty} \frac{N_{\text {fair }}}{N}= \begin{cases}1 & \text { if coin is fair } \\ 0 & \text { if coin is not fair }\end{cases}
$$

- No matter how often we throw/measure, coin is fair or not
- We don't know which!

Bayesian probability

- Bayesian definition: Probability is interpreted as
- reasonable expectation
- representing a state of knowledge
- quantification of a personal (!) belief
- Allows assigning arbitrary probability of coin being fair

$$
P(\text { fair }) \in[0,1]
$$

- If P is subjective, what does it mean exactly?
- $P=1 \rightarrow$ Something is true
- $P=0 \rightarrow$ Something is false
- $P=0.3 \rightarrow$???
- Fair bet: Will not lose (or win) money in the long term
- Considering all information, at what odds would you bet?
- "Semi frequentist" over all instances when you apply Bayesian stats?

Mathematical probability

- Frequentist vs. Bayesian deals with interpretation
- Influences what we can consider a random variable
- Mathematical rules are the same
- Probability (Kolmogorov) axioms
- P are real numbers >0

$$
\begin{aligned}
& P(E) \in \mathbb{R}, P(E) \geq 0 \quad \forall E \in F \\
& P(\Omega)=1 . \\
& P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right) .
\end{aligned}
$$

- Total probability = 1
- P of mutually exclusive events is additive
- Conditional probability \rightarrow Bayes' theorem

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Applies to both Bayesian and Frequentist random variables
- "Fair or not" is not a random variable in Frequentist interpretation!
- What if outcome of experiment lies on continuum?
- Define Probability Density Function (PDF) f (or sometimes p) so that

- Note that $P[X=40]=0$
- Infinitely many points on x, P of single point $=0$
- Two different interpretations of probability
- Frequentist \rightarrow Probability is frequency limit
- Bayesian \rightarrow Probability is certainty or reasonable expectation
- Differ in what can be considered a random variable
- Same rules for calculations with random variables
- Bayes' theorem works for both!
- Homework: Frequentist probability or not?

P (rolling 1 on D20), P(rolling 1 on next D20 roll), P (a randomly picked summer day being sunny), P(yesterday being sunny), P(tomorrow being sunny), P (people actually doing their homework)

What are error bars?

- Bars in plots can be all sorts of things
- Bin widths
- Poisson variance estimate sqrt(N)
- ???
- Read the paper
- Specify in your paper!
- Bayesian \rightarrow Credible Interval
- Parameter is random variable
- Probability of true value within = Credibility Level (often 68\%)
- Frequentist \rightarrow Confidence Interval
- Parameter is fixed (!) but unknown
- Interval edges are random variables
- Probability of Cl covering truth = Confidence Level (often 68\%)
- No matter what the true value is
- Not the same!
- E.g. empty or unphysical confidence intervals are OK! (albeit annoying)
- Need to be treated differently

$P(x 0<$ truth $<x 1 \mid$ truth $)=68 \% \quad x$
- Cl construction is data reduction
- Condense data into 1 or 2 numbers
- Many variations: which CL, one- or two-sided,
- Choice limits future uses of data
- Which values are "the best"?
- Add more information by also providing a point estimate
- E.g. Maximum Likelihood Estimator (MLE), Maximum Aposteriori Probability (MAP), ...
- Does not need to be inside CI! (usually is though)
- Interval w/o central value is useful, e.g. limits
- Central value w/o error bar is useless
- Is deviation of 10% compatible? 0.1% ?
- Better than nothing? Probably add an error bar in your head

Gaussian approximation

- Even with point estimate, Cl only provides single CL
- What if we want to check for stronger deviations?
- Would need to specify full probability/likelihood function
- Gaussian approximation
- Assume a normal distribution of
- Probability of true value (Bayesian)
- Point estimates around true value (Frequentist)
- Completely described by exp. value \& variance

$$
\mu=\langle x\rangle=\int x p(x) \mathrm{d} x \quad \sigma^{2}(x)=\int(x-\langle x\rangle)^{2} p(x) \mathrm{d} x
$$

- Can easily construct Cl of any CL:

- 68\%: $\quad \mu \pm \sigma$
- 95\%: $\mu \pm 2 \sigma$
- 99.7\%: $\mu \pm 3 \sigma$

- Where do CL values come from?
- Integrating probability over normal distribution
- Two-sided 1 std = 68\% CL only true for normal!
- E.g. uniform distribution

$$
\begin{gathered}
\sigma=(b-a) / \sqrt{12} \\
\int_{\langle x\rangle-\sigma}^{(x)+\sigma} p(x) \mathrm{d} x=2 / \sqrt{12} \approx 0.58 \\
x \quad \int_{\langle x\rangle-2 \sigma}^{(x)+2 \sigma} p(x) \mathrm{d} x=1
\end{gathered}
$$

Relation to chi-squared dist.

- Squared deviation is Chi-squared distributed with $\mathrm{k}=1$
- Assuming normal distribution!
- Integral 0-1 = 68\%

$$
(x-\langle x\rangle)^{2} / \sigma^{2} \sim \chi_{1}^{2}
$$

- Integral 0-4=95\%
- Integral 0-9 = 99.7\%
- ...
-What if comparing more than one parameter?
- Multiple XSEC bins, oscillation angles/masses, ...
- Confidence/credible 1D interval $\rightarrow \mathrm{N}$-dim region
- In principle infinite ways to define confidence/credible region in N dimensions

- Expand shape around central value until contains desired CL?
- What shape? Sphere? Box? Heart shape?
- All "correct" as long as CL is right (though not optimal)

Multivariate Gauss

- Uncorrelated N-dim Gaussian approximation
- Uncertainties on all parameters are independent
- N mean values, N variances
- Sum of normed squared distances $\sim X^{2}(k=N)$
- Definition of X^{2} !
- Mode $=k-2$, Mean $=k$
- That is why "reduced χ^{2} " should be roughly 1!
- $\sigma\left(X^{2}\right)=\operatorname{sqrt}(2 k)$
- The higher N , the more unlikely a larger sum/ N becomes!

$$
\sum_{i}^{N}\left(x_{i}-\left\langle x_{i}\right\rangle\right)^{2} / \sigma_{i}^{2} \sim \chi_{N}^{2}
$$

Multivariate Gauss

- Look up value of $\chi^{2}(k)$ distribution where integral = CL
- Compare to sum of squared deviations
- Error bar \rightarrow error ellipse in N -dim
 parameter space
- Sphere in normalised parameter space

- What about correlated variables?
- Assume multivariate normal distribution
- Fully described by N mean values, N variances, and $N^{*}(N-1) / 2$ covariances $\rightarrow \mathrm{N}$ mean values \& $\mathrm{N}^{*} \mathrm{~N}$ covariance matrix $\boldsymbol{\mu}=\mathrm{E}[\mathbf{X}]=\left(\mathrm{E}\left[X_{1}\right], \mathrm{E}\left[X_{2}\right], \ldots, \mathrm{E}\left[X_{k}\right]\right)^{\mathbf{T}}, \quad \Sigma_{i, j}:=\mathrm{E}\left[\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right]=\operatorname{Cov}\left[X_{i}, X_{j}\right]$
- Mahalanobis distance ("the chi-squared")
- Generalisation of sum of squared deviations for correlated variables

$$
D_{M}(\vec{x})=\sqrt{(\vec{x}-\vec{\mu})^{T} S^{-1}(\vec{x}-\vec{\mu})}
$$

- Chi2 distributed $\mathrm{k}=\mathrm{N}$

$$
D_{M}^{2} \sim \chi_{N}^{2}
$$

- Construct Cl with chi2 quantile
- N-dim ellipse in parameter space

- Look up value of chi2(k) distribution where integral = CL
- Compare to squared Mahalanobis distance

- Error ellipse \rightarrow rotated error ellipse
- Can no longer judge fit by looking at plot! \rightarrow Give us the X^{2} !

- Error bars are often confidence/credible intervals
- Former cover truth in CL instances of repeated experiments
- Latter cover CL of posterior probability
- Can convey more information by Gaussian approx.
- Assumptions about shape of uncertainty!
- Construct CI with arbitrary CL w/o reanalysing the data
- Mahalanobis distance \& quantiles of chi2 distribution
- Need full covariance if uncertainties are correlated!
- Homework

Repeat 20 times: "I will provide a full covariance matrix

 and always quote 'the chi-squared' in plots when dealing with correlated data points."- Bayesian straight forward(ish)
- Assume a prior (a can of worms for another workshop)
- Update prior with data and Bayes' theorem
- "Cut out" area of posterior with desired credible level
- Many ways to do this, e.g. central, shortest possible, one-sided, ...
- Why not provide full (parametrised) posterior?
- Frequentist more complicated
- Devise rule for including or excluding a point in parameter space based on the data
- Rule must accept true parameter in CL of cases, no matter what the real parameter actually is
- Necessary for correct CI, but not the only desirable property
- Consider ignoring data, randomly accepting or rejecting full parameter space
- Example: Coin flip
- Parameter: P(H)
- Prior: $\mathrm{p}(\mathrm{P}(\mathrm{H}))$
- Experiment:
- Throw N times
- Get N(H) times heads
- Binomial distribution
- Apply Bayes' theorem
- Prior probability of $\mathrm{N}(\mathrm{H})$

$$
p(\theta \mid x)=\xrightarrow{p(x \mid \theta) p(\theta)} p(x)
$$ can be seen as normalisation const.

- Posterior $p^{\prime}(P(H))$ can get complicated
- Using posterior as prior for next measurement?
- No closed form of $p(x)$?

$$
\begin{aligned}
& =\frac{p(x \mid \theta) p(\theta)}{\int_{\theta} p(x, \theta) d \theta} \\
& =\frac{p(x \mid \theta) p(\theta)}{\int_{\theta} p(x \mid \theta) p(\theta) d \theta}
\end{aligned}
$$

- Special class of prior probability functions
- Posterior probability is same class of function as prior
- $p(P(H))=f(a, b, c, . .$.
- $p^{\prime}(P(H))=f\left(a^{\prime}, b^{\prime}, c^{\prime}, . ..\right)$
- Rules to update hyperparameters a,b,c,... $\rightarrow a^{\prime}, b^{\prime}, c^{\prime}, \ldots$.. with data
- Update rules much simpler than calculating Bayes'!
- Depends on data process!
- E.g. for Binomial process (coin toss) \rightarrow Beta distribution

$$
\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
$$

- Update rules

$$
\alpha+\sum_{i=1}^{n} x_{i}, \beta+\sum_{i=1}^{n} N_{i}-\sum_{i=1}^{n} x_{i}
$$

- Analytical solutions work well for "small" problems
- "Big" problems (lots of parameters, complicated likelihoods) easier to solve with numerical methods
- Markov chain Monte Carlo (MCMC)
- Randomly throw parameter values
- Accept according to rules based on likelihood and prior
- Result is sample of parameters from posterior distribution
- Use sample to fill histograms, fit functions, find central value, etc...
- Lots of complicating details...

- Significance test
- Hypothesis = proposition about stochastic process of data
- E.g. binomial distribution with $\mathrm{P}(\mathrm{H})=0.49$
- Not a random variable!
- Test statistic = function of data, measuring "extremeness"
- Example: standard deviation (z-score), Mahalanobis distance
- p-value = probability of getting "more extreme" result assuming the hypothesis is correct
- When p-value < significance $=\alpha=1-C L$
- Exclude hypothesis from Cl
- By construction will happen randomly at rate alpha
- Critical value: Test statistic where p-value $=a$
- Critical region: Area of test statistic p-value <= α

Gaussian example

- Example: Speed control
- Measure a vehicles speed once

$$
\hat{v}=55 \mathrm{~km} / \mathrm{h}
$$

- Know value is normal distributed around truth

$$
\sigma=2 \mathrm{~km} / \mathrm{h}
$$

- Choose z-score ("sigmas") as test statistic
- 99% CL in Z = +/- 2.58
- Naïve approach:
$v=\hat{v} \pm 2.58 \sigma=(55 \pm 5.16) \mathrm{km} / \mathrm{h}$
- How does this work?
- v is not a random variable!
- Bayesian propaganda?

The Normal

Gaussian example

- Need to define a critical region for each possible value

Gaussian example

- Need to define a critical region for each possible value

Gaussian example

- Check for which parameters the result is in critical region

Gaussian example

- Accepted region happens to be same as naïve solution

Gaussian example

- Lots of symmetry in this Gaussian problem
- PDF symmetric around mean
- Parameter corresponds directly to data
- Data variance is constant
- When treating estimated data PDF as PDF for parameter we get the correct answers by accident!
- Can do the wrong things for the wrong reasons and still get a correct answer

- Example: Speeding rate
- How many speeders are there per year
- Count number of speeding tickets $\mathrm{N}=25$
- Decide: sufficiently Gaussian, use z-score again
- Naïve solution:

$$
\begin{gathered}
\hat{\lambda}=25 \\
\hat{\sigma}=\sqrt{\hat{\lambda}}=5 \\
\lambda=25 \pm 5
\end{gathered}
$$

- How does it hold up this time?

Poisson example

- Need to define a critical region for each possible value

Poisson example

- Expected data variance depends on parameter value!

Poisson example

- Check for which parameters the result is in critical region

Poisson example

- Width depends on parameter, so symmetry broken!

Poisson example

- To find CI limits, solve

$$
\begin{aligned}
x \pm \sqrt{x} & =25 \\
x=\frac{51 \mp \sqrt{101}}{2} & =25.5 \mp 5.02
\end{aligned}
$$

- Cl is shifted by 0.5 compared to naïve solution
- It is also slightly wider
- Point estimate is still valid though!

$$
\lambda=25_{-4.5}^{+5.5}
$$

- Even better: use Poisson likelihood instead of z-score
- The variance of data at the parameter point estimate is not the same as the variance of the parameter!
- The test statistic has to be calculated for each parameter point
- Bayesian Cl are constructed by updating a prior using Bayes' theorem
- Conjugate priors can be used to make updating very easy
- MCMC can be used if no closed form is available
- Many ways to "cut" CI with right CL out of posterior
- Frequentist CI by defining a critical data region for each possible parameter value a priori (Neyman construction)
- All values with measured data in crit. region are excluded
- Often data is not used directly \rightarrow test statistic as intermediary
- Many ways to define critical region
- Homework

How does the speeding result change when looking for 99% CL lower limit, i.e. one sided z-score test?

Choosing a test statistic

- More desirable properties for Cl construction
- Use data efficiently
- Use all the information
- Maximise test "power" = probability to exclude an untrue parameter from Cl
- Aim for short Cl

		Actual scenario	
		H_{0} true	H_{0} is false
	Accept H_{0}	Correct Decision	Type-II error: β Accepting H_{0} when it is false
	Reject H_{0}	Type-I error: α Rejecting H_{0} when it is true	Correct Decision $1-\beta$ Power of test

- To quantify power, need alternative hypothesis to evaluate probability \rightarrow Hypothesis tests

Hypothesis tests

- $\mathrm{HO}=$ hypothesis we want to test
- H1 = alternative hypothesis needed to evaluate β

- Select test statistic that for given a minimises β
- Simple hypothesis = w/o any free parameters
- Includes hypothesis where you fixed all parameters!
- Likelihood ratio proven to be most powerful test statistic (Neyman-Pearson lemma)

$$
\begin{gathered}
\mathcal{L}(\theta \mid x)=p_{\theta}(x)=P_{\theta}(X=x), \\
\Lambda(x) \equiv \frac{\mathcal{L}\left(\theta_{0} \mid x\right)}{\mathcal{L}\left(\theta_{1} \mid x\right)}
\end{gathered}
$$

- Alternative expression as log likelihood ratio
- Easier to compute with (additions instead of multiplications)

$$
\lambda=\ln \Lambda
$$

- Need to determine critical value of ratio for every possible parameter point we want to exclude
- E.g. MC simulation of distribution assuming H0
- Reject HO at low (!) likelihood ratios
- Simple hypothesis = w/o any free parameters
- Includes hypothesis where you fixed all parameters!
- Likelihood ratio proven to be most powerful test statistic (Neyman-Pearson lemma)

$$
\begin{gathered}
\mathcal{L}(\theta \mid x)=p_{\theta}(x)=P_{\theta}(X=x), \\
\Lambda(x) \equiv \frac{\mathcal{L}\left(\theta_{0} \mid x\right)}{\mathcal{L}\left(\theta_{1} \mid x\right)}
\end{gathered}
$$

- Alternative expression as log likelihood ratio
- Easier to compute with (additions instead of multiplications)

$$
\lambda=\ln \Lambda
$$

- Need to determine critical value of ratio for every possible parameter point we want to exclude
- E.g. MC simulation of distribution assuming H0
- Reject HO at low (!) likelihood ratios
- Composite hypothesis = with free parameters

$$
H_{0 / 1}\left(\boldsymbol{\theta}_{0 / 1}\right)
$$

- Can use ratio of maximum likelihoods as test statistic
- Compare best fit point of HO with best fit point of H 1

$$
\lambda=\ln \frac{\sup _{\boldsymbol{\theta}_{0}} \mathcal{L}\left(H_{0}\left(\boldsymbol{\theta}_{0}\right)\right)}{\sup _{\boldsymbol{\theta}_{1}} \mathcal{L}\left(H_{1}\left(\boldsymbol{\theta}_{1}\right)\right)}
$$

- Not guaranteed to be most powerful test
- But it is under certain circumstances (Karlin-Rubin theorem)
- Usually considered to be pretty good
- Finding critical value becomes very hard in general case
- What values to assume for free parameters in MC?

Wilks' theorem

- Under some (generic) conditions
- H0 is subset of H1

$$
H_{0}\left(\boldsymbol{\theta}_{0}\right) \subset H_{1}\left(\boldsymbol{\theta}_{1}\right)
$$

- "Data is good enough", e.g. MLE are norm. distr.
- If point on HO is true
- Likelihood ratio is X^{2} distributed

$$
\lambda=\ln \xrightarrow{\sup _{\boldsymbol{\theta}_{0}} \mathcal{L}\left(H_{0}\left(\boldsymbol{\theta}_{0}\right)\right)} \sup _{\boldsymbol{\theta}_{1}} \mathcal{L}\left(H_{1}\left(\boldsymbol{\theta}_{1}\right)\right)
$$

$$
-2 \lambda \sim \chi^{2}\left(k=\left\|\boldsymbol{\theta}_{1}\right\|-\left\|\boldsymbol{\theta}_{0}\right\|\right)^{\text {nparam }}
$$

- Can use X^{2} quantiles to calculate critical values
- No need for time consuming MC
- Reason why ndof = N(data points) - N(fit parameters) for GOF
- $\mathrm{HO}=$ Expectation value calculated from fit parameters
- H1 = Expectation values of all data free
- Bad "chi-squared" \rightarrow we say the data does not fit
- Actually a hypothesis test!

- When constructing Cl have (at least) two choices for H 1
- $\mathrm{H} 1=$ most general hypothesis possible (ndof = ndata)
- $\mathrm{H} 1=\mathrm{HO}$ but with all parameters free (ndof = nparam)
- In both cases ndof(HO) < ndof(H1)
- (some) parameters fixed, where we want to check whether they are inside the Cl or not
- Example: Linear fit to 4 points
- HO: y = ax + b; a=1, b=4; ndof = 0
- H1a: y = ax + b; a, b; ndof = 2
- H1b: y1, y2, y3, y4; ndof = 4
- Case a: Will always find accepted region

$$
a=\hat{a}, b=\hat{b} \rightarrow-2 \lambda=0
$$

- Case b: Cl might be empty (if fit is bad)

- Can provide more than just Cl again (e.g. what fitters do)
- Scan log-likelihood surface

$$
-2 \ln \mathcal{L}_{0}(\boldsymbol{\theta})\left[+2 \ln \mathcal{L}_{1}\right]
$$

- Find best fit (max likelihood, MLE) point $\hat{\theta}$
- Use curvature around MLE (or other technique?) to approximate surface as quadratic function
- In case of Gaussian uncertainties w/ fixed variance, this is exact!
- Return covariance matrix S and MLE so that

$$
(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}})^{T} S^{-1}(\boldsymbol{\theta}-\hat{\boldsymbol{\theta}}) \approx-2 \ln \mathcal{L}_{0}(\boldsymbol{\theta})-\left(-2 \ln \mathcal{L}_{0}(\hat{\boldsymbol{\theta}})\right)
$$

- RHS is chi-square distributed with ndof = nparam
- LHS looks like Mahalanobis distance!

$$
D_{M}^{2} \sim \chi_{N}^{2}
$$

- Can use MLE and covariance to construct Cl
- As if it described a PDF of the parameters

- Defining an alternative H1 and Type II error helps us decide on a test statistic
- Minimise P(Type II) for a given P(Type I)
- Likelihood ratios are usually a very good choice
- When $H_{0}\left(\boldsymbol{\theta}_{0}\right) \subset H_{1}\left(\boldsymbol{\theta}_{1}\right)$ (and other requirements)
$-2 \lambda \sim \chi^{2}\left(k=\left\|\boldsymbol{\theta}_{1}\right\|-\left\|\boldsymbol{\theta}_{0}\right\|\right)$
- Likelihood surface (function of parameters) often approximated as quadratic function \rightarrow covariance matrix
- Gaussian approximation \rightarrow symmetry \rightarrow easy Cl construction
- Homework

Show that the a two-sided z-score and likelihood ratio tests are equivalent for normally distributed data.

- Have uncertainty of parameters covered
- How to propagate to uncertainty of prediction?
- Monotone 1D functions \rightarrow easy
- f(Cl edges)
- Linear function \rightarrow even better
- Gaussian approx. \rightarrow new Gaussian

$$
\hat{y}=f(\hat{x}), \quad \sigma_{y}=\frac{\mathrm{d} y}{\mathrm{~d} x} \sigma_{\theta}=a \sigma_{x}
$$

- N -dim linear combination
- N-dim Gauss \rightarrow M-dim new Gauss

$$
\begin{gathered}
\boldsymbol{y}=A \boldsymbol{x}+\boldsymbol{b} \\
\hat{\boldsymbol{y}}=A \hat{\boldsymbol{x}}+\boldsymbol{b} \\
\Sigma^{y}=A \Sigma^{x} A^{T}
\end{gathered}
$$

- Non-linear function, but "straight" on scale of uncert.
- Approximate as linear (Taylor expansion)

$$
\begin{gathered}
\boldsymbol{y}=A \cdot(\boldsymbol{x}-\hat{\boldsymbol{x}})+\boldsymbol{b} \\
\boldsymbol{b}=\boldsymbol{y}(\hat{\boldsymbol{x}}), \quad A_{i j}=\left.\frac{\partial y_{i}}{\partial x_{j}}\right|_{\hat{\boldsymbol{x}}}
\end{gathered}
$$

- Rest stays same as in linear case

$$
\begin{aligned}
\Sigma^{y} & =A \Sigma^{x} A^{T} \\
\sigma_{y_{k}}^{2}=\Sigma_{k k}^{y} & =\sum_{i, j} \frac{\partial y_{k}}{\partial x_{i}} \frac{\partial y_{k}}{\partial x_{j}} \Sigma_{i j}^{x}
\end{aligned}
$$

- No one ever checks "straightness"
- Coverage tests are important!

Monte Carlo propagation

- Function difficult to differentiate?
- Throw parameters
- Calculate function for each throw
- Extract uncertainty on prediction from sample
- Always possible in Bayesian statistics
- Parameter uncertainty is probability distribution
- Frequentist? Harder to justify
- Uncertainty describes likelihood, not a PDF
- But only ratios matter!
- Does the right thing in linear case
- Distorts (relative) likelihoods when not linear
- What we want: $\mathcal{L}(y)=\mathcal{L}(x(y))$
- What we get:

$$
\frac{\mathrm{d} x}{\mathrm{~d} y}(y) \mathcal{L}(x(y))
$$

- Propagation of uncertainty works as expected in Ideal Linear Normal Land
- Just use "regular" error propagation
- Analytical or MC
- Works in Frequentist and Bayesian
- When function is not linear enough

- Bayesian MC method still works
- No simple solution for Frequentists (I am aware of)
- At least not in the general N -dimensional case
- when monotone, can calculate $\mathcal{L}(x(y))$ or translate Cl edges directly
- Homework

We measured the sides of a cube to be ($2+-0.3$) mm. What are the uncertainty and Cl on the volume?
At what significance have we shown that volume > 0?

Summary Summary

- Statistics can be hard
- Understanding will lead to better physics results
- Blindly following "rules" can lead to mistakes
- Understanding comes with taking this seriously over and over
- Question what you are doing until you know it makes sense!
- Frequentist probabilities are strictly defined, "objective"
- Though talking about parameters/uncertainties is a pain
- Bayesian probability definition is softer, "subjective"
- Much easier to think/talk about
- Further reading
- Wikipedia
- PDG Particle Data Booklet
- Cowan (1998) - Statistical Data Analysis
- Bohm - Introduction to Statistics and Data Analysis for Physicist (free PDF!)
- Papers/books referenced in the above
- Can be dense, conventions/lingo differs between stats and physics

