One- and two-nucleon knock-out in neutrino-nucleus scattering: Nuclear mean-field approaches

Kajetan Niewczas

Kaietan Niewczas

NuSTEC Summer School 2024

1/50

Mean-field nuclear picture

\rightarrow we use a realistic nucleon-nucleon potential to derive the central nuclear potential

Kajetan Niewczas	;
------------------	---

Oxygen wave functions

http://discovery.phys.virginia.edu/research/groups/ncd/index.html https://www.phy.anl.gov/theory/research/density/norfolk.html

Outline

Lecture 1. the general framework of the nuclear mean-field model

Lecture 2. one- and two-nucleon knock-out in lepton-nucleus scattering

- (1) Kinematics and scattering cross section
- (2) Distorted-wave calculations
- (3) Corrections and additional dynamics

Nuclear response in the quasielastic and Δ regions

Kajetan Niewczas

Kinematics and scattering cross section

Independent variables in a scattering problem

Counting independent variables:

- $\circ \ 4 \ x \ 4 \ vectors \rightarrow \qquad \qquad + \ 16 \ numbers$
- \circ 4-mom. conservation \rightarrow 4 numbers
- $\circ \ 4 \ x \ on-shell \ particles \rightarrow \qquad \text{-} \ 4 \ numbers$
- \circ target rest-frame \rightarrow 3 numbers
- $\circ~$ fixed projectile direction $\rightarrow~$ ~ 2 numbers
- $\circ~$ fixed incoming energy $\rightarrow~$ 1 number
- for 2-to-2 scattering: 2 independent variables

Note, the cross section does **not depend on the global** ϕ **rotation**!

Independent variables in a scattering problem

Unknown particle 4-vectors	Variables	Physical effects	Variables
Initial lepton	4	Particles on-shell	-(3 + N)
Target nucleus	4	4-momentum conservation	—4
Final lepton	4	Target rest-frame	-3
Remnant nucleus	4	Fixed projectile direction	-2
Outgoing hadrons	4N	Fixed incoming energy	-1
	16 + 4N		-13 - N
			3 + 3N

Counting the number of independent variables describing lepton-nucleus interactions while detecting N hadronic particles in the process, summing over the spin of the outgoing lepton, and leaving the remnant nucleus undetected.

Scattering cross sections

Target	Process	Properties	Example formula
	(Quasi)elastic	N = 0, all particles on-shell	$\frac{d\sigma}{dQ^2}$
Free nucleon	Inelastic	N = 0, excited hadronic system	$\frac{d^2\sigma}{dQ^2dW}$
	SPP	N = 1, all particles on-shell	$\frac{d^4\sigma}{dQ^2dWd\Omega_{\pi}}$
	Inclusive	N = 0, all hadrons integrated	$\frac{d^2\sigma}{d\Omega'}$
Nuclous	1p1h	N = 1, detected one nucleon	$\frac{d^{5}\sigma}{dE'd\cos\theta'dT_{N'}d\Omega_{N'}}$
Inucleus	2p2h	N = 2, detected two nucleons	$\frac{\mathrm{d}^8\sigma}{\mathrm{d}\mathrm{E}'\mathrm{d}\cos\theta'\mathrm{d}\mathrm{T}_{\mathrm{N}\prime}\mathrm{d}\Omega_{\mathrm{N}\prime}\mathrm{d}\mathrm{T}_{\mathrm{N}\prime\prime}\mathrm{d}\Omega_{\mathrm{N}\prime\prime}}$
	SPP	N = 2, detected nucleon and π	$\frac{d^8\sigma}{dE'd\Omega'dE_{\pi}d\Omega_{\pi}d\Omega_{N'}}$

The dimensionality of cross section formulas for the most basic lepton scattering scenarios, off the free nucleon or on the nucleus.

Kinematics

Inclusive cross section

Electron scattering Neutrino scattering $\frac{d\sigma^{\gamma}}{d\epsilon_{f}d\Omega_{f}} = 4\pi\sigma^{Mott}[\mathcal{V}_{L}^{e}\mathcal{W}_{L} + \mathcal{V}_{T}^{e}\mathcal{W}_{T}] \qquad \frac{d\sigma^{W}}{d\epsilon_{f}d\Omega_{f}} = 4\pi\sigma^{W}\zeta[\mathcal{V}_{CC}\mathcal{W}_{CC} + \mathcal{V}_{CL}\mathcal{W}_{CL} + \mathcal{V}_{LL}\mathcal{W}_{LL} + \mathcal{V}_{T}\mathcal{W}_{T} + h\mathcal{V}_{T}\mathcal{W}_{T}\mathcal{W}_{T}]$

 \mathcal{V}_x - leptonic factors; \mathcal{W}_x - hadronic responses; L/T - longitudinal/transverse relative to \vec{q}

Kajetan Niewczas

NuSTEC Summer School 2024

z

Hadronic responses

In the **Born approximation** (1 boson), we have 16 terms coming from:

$$\begin{split} & \frac{d\sigma}{dE'd\cos\theta'dT_{N'}d\Omega_{N'}} \propto L_{\mu\nu}W^{\mu\nu} \\ & \propto \left[\nu_{CC}W_{CC} + \nu_{CL}W_{CL} + \nu_{LL}W_{LL} + \nu_{T}W_{T} + \nu_{TT}W_{TT} + \nu_{TC}W_{TC} + \nu_{TL}W_{TL} + \nu_{\overline{TT}}W_{\overline{TT}} \right. \\ & \left. + \nu_{\overline{TC}}W_{\overline{TC}} + \nu_{\overline{TL}}W_{\overline{TL}} + h\left(\nu_{T'}W_{T'} + \nu_{TC'}W_{TC'} + \nu_{TL'}W_{TL'} + \nu_{\overline{CL'}}W_{\overline{CL'}} + \nu_{\overline{TC'}}W_{\overline{TC'}} + \nu_{\overline{TL'}}W_{\overline{TL'}}\right)\right] \end{split}$$

For unpolarized processes:

$$\frac{d\sigma}{dE'd\cos\theta'dT_{N'}d\Omega_{N'}} \propto \left[\nu_{CC}W_{CC} + \nu_{CL}W_{CL} + \nu_{LL}W_{LL} + \nu_{T}W_{T} + \nu_{TT}W_{TT} + \nu_{TC}W_{TC} + \nu_{TL}W_{TL} + h\left(\nu_{T'}W_{T'} + \nu_{TC'}W_{TC'} + \nu_{TL'}W_{TL'}\right)\right]$$

Integrating out the nucleon solid angle:

$$d\Omega_{N'} \frac{d\sigma}{dE'd\cos\theta' dT_{N'}d\Omega_{N'}} \propto [\nu_{CC}W_{CC} + \nu_{CL}W_{CL} + \nu_{LL}W_{LL} + \nu_{T}W_{T} + h\nu_{T'}W_{T'}]$$

Using conserved vector current, $J_3(q) = (\omega/|q|)J_0(q)$, and h = 0:

$$\frac{d\sigma}{dE'd\cos\theta'} \propto [\nu_L W_L + \nu_T W_T]$$

Kajetan Niewczas

NuSTEC Summer School 2024

(1)

(2)

(3)

(4)

One variable mysteriously disappeared?

- $\circ~$ in a pure shell model $\rho(E_m)$ is $\sum_h \delta(E_m-E_h)$
- $\circ~$ phenomenological profiles for $\rho(E_{\mathfrak{m}})$

R. González-Jiménez et al., Phys.Rev. C 105 (2022), 025502

Distorted-wave calculations

Nuclear mean-field model

- → Nucleons exhibit discrete energy states characteristic of the mean-field potential picture
- → The redistribution of shell strength is caused by the nucleon-nucleon correlations
- → Residual nuclei can be excited above the two-nucleon knock-out threshold

Our nuclear framework

- \rightarrow Nucleons are solutions to the Schrödinger equation in a mean-field potential
- → We calculate single-particle states with the Hartree-Fock procedure and SkE2 NN force
- \rightarrow We describe outgoing nucleons as **continuum states** of the nuclear potential

Impulse approximation

 \rightarrow We evaluate the following hadronic transition currents

$$\mathcal{J}(\vec{r})^{had}_{\nu} = \langle \Psi_{f} \, | \, \hat{\mathcal{J}}(\vec{r})^{had}_{\nu} \, | \, \Psi_{i} \, \rangle$$

→ The nuclear many-body current is a sum of one-body operators

$$\hat{\jmath}(\vec{r})_{\nu}^{had} \simeq \hat{\jmath}(\vec{r})_{\nu}^{IA} = \sum_{j=1}^{A} \hat{\jmath}(\vec{r}_{j})_{\nu}^{[1]} \delta^{(3)}(\vec{r} - \vec{r}_{j})$$

→ We control numerical precision using a **multipole decomposition**

\rightarrow Comparing to inclusive electron scattering data allows for benchmarking of the model

Impulse approximation: electron scattering

Kajetan Niewczas

Impulse approximation: distorted waves

18 / 50

Impulse approximation: distorted waves

Kajetan Niewczas

NuSTEC Summer School 2024

June 8th 2024 19 / 50

Impulse approximation: relativistic corrections

Fixing the relativistic position of the quasielastic peak

 $\omega \to \omega \left(1 + \frac{\omega}{2M_N}\right)$, then $\omega_{\text{QE}} = \frac{|\vec{q}|^2}{2M_N} \to \frac{Q^2}{2M_N}$

Impulse approximation: electron scattering

→ Calculation using **one-body currents** is fairly accurate

Kajetan Niewczas

Impulse approximation: neutrino scattering

Corrections and additional dynamics

N. Jachowicz, NuSTEC School 2017

N. Jachowicz, A. Nikolakopoulos, Eur.Phys.J.ST 230 (2021), 4339-4356

Kajetan Niewczas

N. Jachowicz, A. Nikolakopoulos, Eur.Phys.J.ST 230 (2021), 4339-4356

Kajetan Niewczas

N. Jachowicz, A. Nikolakopoulos, Eur.Phys.J.ST 230 (2021), 4339-4356

Kajetan Niewczas

Impulse approximation: electron scattering

→ Calculation using **one-body currents** is fairly accurate

Kajetan Niewczas

Impulse approximation: electron scattering

 \rightarrow Overestimation of the longitudinal and the underestimation of the transverse responses

Kajetan Niewczas

NuSTEC Summer School 2024

June 8th 2024 29 / 50

Short-range correlations

→ Nucleons with strongly **overlapping wave functions** for a short period of time

$$\hat{\mathcal{J}}_{\nu}^{\text{eff}} \simeq \sum_{i=1}^{A} \hat{\mathcal{J}}_{\nu}^{[1]}(i) + \sum_{i < j}^{A} \hat{\mathcal{J}}_{\nu}^{[1],\text{SRC}}(i,j)$$

with

$$\hat{\mathcal{J}}_{\nu}^{[1],\mathrm{SRC}}(\mathfrak{i},\mathfrak{j}) = \left[\hat{\mathcal{J}}_{\nu}^{[1]}(\mathfrak{i}) + \hat{\mathcal{J}}_{\nu}^{[1]}(\mathfrak{j})\right] \hat{\mathfrak{l}}(\mathfrak{i},\mathfrak{j})$$

- \rightarrow First corrections to the **independent-particle model** picture for 1p1h
- \rightarrow Two-body currents also leading to two-nucleon knock-out reactions

Kajetan Niewczas

Short-range correlations: electron scattering

→ Significant reduction of the 1p1h strength and a minor 2p2h contribution

Kajetan Niewczas

June 8th 2024 31 / 50

Short-range correlations: electron scattering

 \rightarrow Interplay between different correlation effects

Kajetan Niewczas

Short-range correlations: electron scattering

 \rightarrow Including correlation effects does not fix the ratio

Rajetan Niewczas

Meson-exchange currents

Explicit **two-body currents** contributing to both **1p1h** and **2p2h** final-states:

Delta currents

Kajetan Niewczas

Meson-exchange currents: electron scattering

\rightarrow Meson-exchange currents enhance the transverse response

Kajetan Niewczas

NuSTEC Summer School 2024

June 8th 2024 36 / 50

Meson-exchange currents in RMF

Meson-exchange currents derived from ChPT:

 \rightarrow plus spectroscopic factors

T. Franco-Munoz et al., Phys.Rev. C 108 (2023), 064608

Kajetan Niewczas

NuSTEC Summer School 2024

June 8th 2024

→ Coherent sum of SRC and MEC enhances our predictions

 \rightarrow Interplay between SRC and MEC effects in the transverse response

Kajetan Niewczas

 \rightarrow Meson-exchange currents are neccessary to fix the ratio

Kajetan Niewczas

 \rightarrow Softer correlations enhance the comparison for larger momentum transfer

Kajetan Niewczas

NuSTEC Summer School 2024

June 8th 2024 42 / 50

Kajetan Niewczas

JLab Hall A data

→ The choice of the different central correlation functions modifies the QE peak strength (GD-stronger, VMC-weaker) → Modifying the Δ-propagator governs the overlap between MEC and SPP around the Δ peak (Re Δ-only the real part)

JLab Hall A data

 \rightarrow Combining variation in given d.f. provides flexibility in describing QE and \triangle peaks

Kajetan Niewczas

June 8th 2024

JLab Hall A data

→ Interferences are vital in correct interpretation of scattering cross sections

Going more exclusive... in neutrino scattering

Exclusive two-nucleon knock-out

Semi-inclusive two-nucleon knock-out

θ_a [deg]

٥ 0

θ_b [deg]

θ_h [deg]

0

Summary I

- One-nucleon knock-out:
 - → **factorized models**: PWIA, many MC approaches
 - → **unfactorized models**: DWIA, RPWIA, RMF, ...
 - \rightarrow some correlations included, some added
 - \rightarrow proper treatment of **Pauli blocking** requires an angular momentum base
- Two-nucleon knock-out:
 - \rightarrow many models are based on (local) Fermi gas: Valencia, SuSAv2, ...
 - \rightarrow some include **correlation currents**, some phenomenological SRCs
 - $\rightarrow~$ many models provide too much strength and modify the Δ propagator
 - $\rightarrow\,$ nobody really knows how to do it right ...

Summary II

- Nucleons in a central potential is a natural approach to nuclear physics
- Mean-field framework allows for realistic distorted-wave calculations
- We are capable of performing certain advanced corrections to this model
- In-medium properties and other dependencies are still largely unknown
- Neglecting double-counting and interferences leads to "Frankenmodels"
- There is a long way to implement these models in MCs in their full complexity

Problem session

Are you interested in nuclear models, modeling neutrino interactions, or Monte Carlo generators?

 \rightarrow we are meeting to solve problems from yesterday's lecture together–**Tuesday after classes**!

Kajetan Niewczas