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About Me

| am a theoretical particle physicist, currently an Assistant Professor in the Texas A&M Physics
& Astronomy Department. Previously (2021-2022), | was a senior fellow in the CERN Theoretical
Physics Department, and (2018-2021), | was a research associate in the Fermilab Theory
Group. As a theoretical physicist, | explore all kinds of topics related to particle physics and
cosmology, from the smallest scales to the largest.

Two of the biggest outstanding mysteries in particle physics today are the origin of neutrino
masses and the nature of dark matter in the universe. | work on the interface between these
topics, focusing on how current and next-generation experiments can shed light on both. Over
the next decade or two, we will start to have precise measurements of neutrino properties, with
which we can test our current assumptions of them and find out if there is any more new
physics in the neutrino sector. At the same time, these current/future experiments are very well-
suited to search for light dark matter and any associated new particles that may also exist.

By studying the capabilities of these experiments, not only can | determine how they can
extract all possible information out of their data, but | can also determine whether there are
connections between the two mysteries of neutrino mass and dark matter.

See the links above for more information about me, including my CV and publications.

Website link1, link2

My interests:

* Neutrino phenomenology (earth-based
experiments, solar/atmospheric/astrophysical
detections)

» Searches for beyond-the-SM physics at these/
other facilities

» Cosmology, especially the impact of neutrinos/
light new physics on cosmological evolution


https://kjkellyphys.github.io/
https://artsci.tamu.edu/physics-astronomy/contact/profiles/kevin-kelly.html

Who am I?

Disclaimer: | will try to give a broad overview of BSM searches
relevant for NUSTEC folks. It will be biased towards the
facilities/scenarios that interest me %

Want more examples? Ask! (During the talk, in the breaks, etc.)
| have plenty of literature references/ideas not in these slides

Second Disclaimer: | (likely) prepared way too much
material for two lectures. Take a look at what | didn’t
cover if you’re interested and don’t hesitate to reach out
to me later to discuss futher!



https://kjkellyphys.github.io/
https://artsci.tamu.edu/physics-astronomy/contact/profiles/kevin-kelly.html
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{M topics beyond these lectures
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How to search for BSM?
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Scenario 1:
Little-to-no expected SM Background



Case Study
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Explicit Model — Dark Photons  UL(Dy
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Explicit Model — Dark Higgs Bosons
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Explicit Model — Heavy Neutral Leptons
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Accelerator Neutrinos 101

(with apologies to the experimental & accelerator physicists in the audience)

Proton Beam

Magnetic Focusing Horns Decay Volume

I O(100s) of meters
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Long-lived particle searches

Proton Beam

Magnetic Focusing Horns Decay Volume

O(100s) of meters
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Berryman, de Gouvéa, Fox, Kayser, KJK, Raaf [1912.07622]

DUNE Sensitivity pt 1
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https://arxiv.org/abs/1912.07622
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Other HNLs at DUNE Studies?

Ballett et al [1905.00284],
Coloma et al [2007.03701],
Breitbach et al [2102.03383]...
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https://arxiv.org/abs/1905.00284
https://arxiv.org/abs/2007.03701
https://arxiv.org/abs/2102.03383
https://arxiv.org/abs/1912.07622

Impact of Backgrounds on LLP Searches

Depends significantly on your search of interest

Case 1) Long-lived HNL decaying into a muon and a pion

e

Case 2) Dark photon/Higgs decaying into an electron/positron pair
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Case 1 — HNL to muon/pion ~
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Timing Distributions MicroBooNE collab.

: MicroBooNE Simulation
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https://arxiv.org/abs/1911.10545

Case 2 — DP/DH to electron/positron




Dimuon event distributions
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https://arxiv.org/abs/2309.06492

Dimuon event distributions Coloma et al

We assume that the dominant background source in this search will be neutrino-argon inter-
actions in the active volume of the TPCs. We estimate that other possible background sources
(such as neutrino-rock interactions or cosmic muons) will be negligible in comparison, as the
resulting events will not be aligned with the direction of the beam, in general. Using the GENIE
neutrino Monte Carlo generator (version 3.2.0) [123] and the public DUNE flux histogram files
[120, 121], we have produced 2 x 107 v,/ interactions.
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https://arxiv.org/abs/2309.06492

Dielectron Distribution,|Col

—
-]
—t
T

Arbitrary units
—
<

1071}

| T
oma et al

a—ete”

mq = 300 MeV ]

0.2

0.4 0.6
Chxmnl(rad)

0.8

23


https://arxiv.org/abs/2309.06492

Coloma et al

TABLE I. Signal efficiencies and background event rates for the different decay channels, before and after
event selection according to the cuts discussed in the main text. Results are shown separately for the
two DUNE near detectors considered. Background event rates are provided per year, and for the total
fiducial volume considered for each detector. We highlight in bold type the large backgrounds expected
for some of the decay channels, as well as the reduced LAr ND signal efficiencies for most decay channels
considered.

Selection cut Signal efficiency Background rate
ND-LAr ND-GAr ND-LAr ND-GAr
Two p-like tracks only 1.00 1.00 3545674 70656
'3 PID p and opposite charge sign 0.40 1.00 6226 124
s Transverse momentum < 0.125 GeV/c 0.40 0.99 99 2
Angle between muons < 0.7 rad 0.40 0.94 0 0
N Two e-like tracks/showers 0.10 1.00 9432 145
e Reconstructed ALP direction 0.10 0.99 180 15
Two v showers only 0.05 0.79 36276 14222
< Reconstructed ALP direction 0.05 0.79 6938 7923
Angle between « showers 0.05 — 1367 —
%% Two p-like tracks, two vy showers 0.04 0.81 2030490 40462
| PID n* and charge sign 0.04 0.81 431035 8589
5 Transverse momentum < 0.2 GeV/c 0.04 0.79 17182 342

& Angle between pions < 0.15 rad 0.04 0.69 946 19



https://arxiv.org/abs/2309.06492

Scenario 2:
Theoretically Clean SM Background
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SM CEvNS rate depends on:




Challenge(s) associated with CELNS

Coherent Neutrino-Nucleus Scattering as a Probe
of the Weak Neutral Current

DANIEL Z., FREEDMAN
National Accelerator Laboratory, Batavia, Illinois 60439

and

Institute for Theoretical Physics, SUNY
Stony Brook, NY 11790

If there is a weak neutral current, then the elastic scattering
process v+ A - v+ A should have a sharp coherent forward peak
just as e+ A —~e + A does, Experiments to observe this peak can
give important information on the isospin structure of the neutral
current . The experiments are very difficult, although the estimated
cross sections (about 10-38 cm2 on carbon) are favorable. The
coherent cross sections (in contrast to incoherent) are almost

energy-independent, Therefore, energies as low as 400MeV may

be suitable.
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https://inspirehep.net/files/8199cd89bec809315db441ab1d4b0184

Successes wWith COHERENT COHERENT collab., [1708.01294]

+ g
| YL A +
fW 4 0 o

5 15 25 35 45 5 15 25 35 45
Number of photoelectrons (PE)

(o)}
o

z Beam OFF

H

Te}

> 30}

§15» ; j

o
AR

1 3 5 7 9 11 1 L 5 7 9
Arrival time (us)

28


https://arxiv.org/abs/1708.01294
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https://arxiv.org/abs/2003.10630

Going BSM with CELNS e.g. Cadeddu et al,
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https://arxiv.org/abs/2008.05022

Effect on Differential Cross Sections
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https://arxiv.org/abs/2008.05022

on CE/NS Event Rates
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https://arxiv.org/abs/2008.05022

Most “intriguing” BSM U(1) — L, — L,
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COHERENTand L, - L,
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https://arxiv.org/abs/2008.05022

Beauty of Complementarlty
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Aside: Broad thinking re: U(1); _; Escudero* et al, [1901.02010]
u~ tr :
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https://arxiv.org/abs/1901.02010

