STATISTICAL METHODS FOR CROSS-SECTION MEASUREMENTS: PAST, PRESENT AND FUTURE

Lukas Koch NuSTEC 2024 Summer School

JOHANNES GUTENBERG
UNIVERSITÄT MAINZ

DISCLAIMER: OPINIONS!

- Necessarily more familiar with some methods compared to others
 - Biased sample of methods previously/currently in use
 - Very biased sample of potential future developments
- If anything seems fishy, probably my fault
- Many subtleties at every step
 - I do not have the time to get into
- Open to Bayesian methods, but biased towards Frequentism
- Most probable answer in statistics: "It depends"

SOME NOTATION

- $\mathbf{v}_{i} = \Sigma_{j} \mathbf{R}_{ij} \mathbf{\mu}_{j}$
 - Expected number of observed events v_i in reco bin i
 - Expected number of true events μ_i in truth bin j
 - Response matrix R is N x M matrix
- Observed events:
 n_i ~ Poisson(v_i)
- True events:
 m_j ~ Poisson(μ_j)

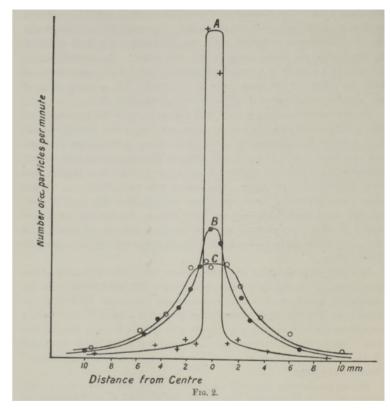
- Binned in multiple variables
- Not necessarily same physical meaning
 - track_length_reco = R *
 momentum true
- Purely mathematical approach:
 R = P(event in reco i | event in truth j)
 = S * eff
- Background handling approaches
 - Subtract from observed events:
 n_i = o_i b_i
 - "Breaks" Poisson statistics
 - Add to expectation $v_i = \zeta_i + \beta_i$

EVENT RATES VS CROSS SECTIONS

- $\mu_j = \Sigma_k T (d\sigma/dy)_{jk} \Phi_k \Delta y_j = T (d\sigma/dy)_{j,\Phi-avg} \Phi \Delta y_j$
 - For "thin" targets
 - For a neutrino, "thin" can mean a lightyear of lead
 - Assuming cross section is sufficiently constant over bin!
- Conceptual steps:
 - Measure n_i → Use it as proxy for v_i
 - Unfold and efficiency correct to μ_i
 - Convert event rates to cross sections
- Uncertainties break neat factorisation
 - E.g. detector smearing depends on neutrino flux uncertainty?
- Details vary a lot: "It depends"

JUST LOOK AT RECO

- Implicitly compare n_i with μ_i
 - Pretend y_{reco} and y_{truth} are the same
- Ancient past: Don't even put error bars
 - Not as unreasonable as it sounds
 - n vs. **v**
- Slight improvement: bin-by-bin efficiency correction: n_i / eff_i
 - Only does what you expect if R is diagonal → No smearing



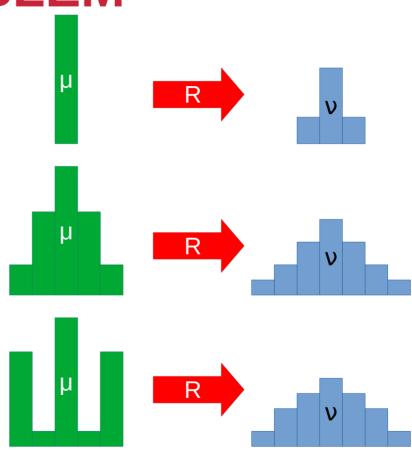
H. Geiger, On the scattering of the α -particles by matter, https://doi.org/10.1098/rspa.1908.0067

NAIVE APROACH: JUST INVERT R

- Usually we have smearing
- $\mathbf{v} = \mathbf{R}\mathbf{\mu}$ so why not just calculate $\mathbf{\mu} = \mathbf{R}^{-1}\mathbf{v} \approx \mathbf{R}^{-1}\mathbf{n}$
- Possible when N = M
 - Choose suitable left-inverse when N > M
- Solves least squares problem:
 - Minimize $|\mathbf{v} \mathbf{n}|^2 = |\mathbf{R}\mathbf{\mu} \mathbf{n}|^2$
 - $-\mu = (R^TR)^{-1}R^T n = R^{-1} n$
 - Equivalent to maximum likelihood solution when uncertainties Gaussian with known variances
- Can lead to large variance and strong anticorrelations in result

THE ILL POSED PROBLEM

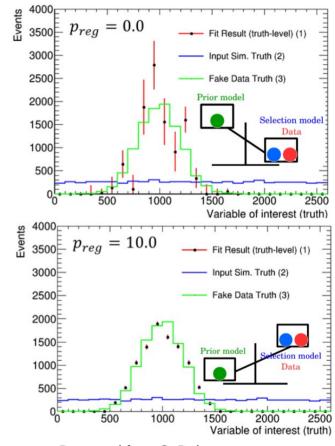
- Strong correlations stem from fact that very different μ can lead to very similar ν
- Small fluctuations in $\bf n$ lead to large swings in "best guess" at $\bf \mu$
- Many different solutions are virtually indistinguishable
 - Pick a nicer looking one!
- Impose a slight preference for "nice looking" results
 - Can be interpreted as Bayesian prior or Frequentist external constraint



RIDGE REGRESSION / TIKHONOV

REGULARISATION

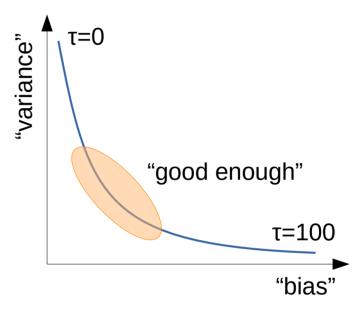
- Modify optimisation problem
 - Add a penalty term for "bad looking" solutions
 - Minimize $|\mathbf{R}\boldsymbol{\mu} \mathbf{n}|^2 + |\mathbf{C}\boldsymbol{\mu}|^2$
 - $|C\mu|^2 = \mu^T C^T C \mu = \mu^T Q \mu$
- Tikhonov matrix C, or penalty matrix Q
 - Notations vary
 - Choice of C/Q determines what is penalised and how strongly, e.g.
 - $Q = \tau I \rightarrow L_2 \text{ norm of } \mu$
 - $\boldsymbol{\mu}^{\mathsf{T}} Q \boldsymbol{\mu} = \tau \; \Sigma (\boldsymbol{\mu}_{\mathsf{j}} \boldsymbol{\mu}_{\mathsf{(j+1)}})^2$
 - → Squared differences of neighbouring bins
- New solution
 - $-\mu \hat{r} = (R^TR + Q)^{-1}R^T n$
 - Adding Q makes R^TR "less problematic" to invert



Borrowed from S. Dolan

HOW STRONGLY TO REGULARISE

- Regularisation can be seen as prior/external constraint
 - Should be well defined.
- Mostly it is introduced ad-hoc
 - Might know what we dislike, but not how much
 - Regularisation strength τ not known a priori
- Regularisation introduces bias
 - Also messes with coverage properties



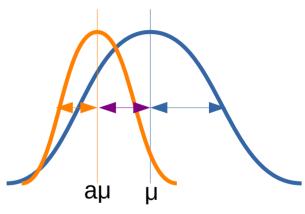
- Usually some heuristic method to "balance" bias and variance of result
 - e.g. L-curve method
- Can define an objective function and optimize with respect to it
 - What should be optimized can be subjective

STATISTICAL SHRINKAGE

- Why is it reasonable to penalise large $|\mu|^2$?
- E.g. want to estimate mean value of normal distirbution
- Single sample x from $N(\mu, \sigma)$
 - Maximum likelihood estimator (MLE): $\mu = x$
 - E[(x- μ)²] = σ^2
- Multiply x by shrinkage factor a
 Shrinkage esitmator (SE): μ̂ = ax

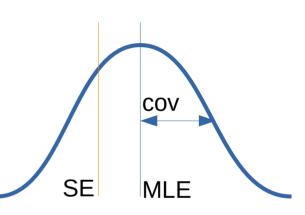
 - E[(ax- μ)²] = (a-1)² μ ² + a² σ ²
 - Minimal at a = $\mu^2 / (\sigma^2 + \mu^2) < 1$

- At cost of biasing point estimate towards 0
- Choosing a point estimator does not affect the likelihood function



POINT ESTIMATE VS LIKELIHOOD FUNCTION

- But all information of experiment is (should be) inside likelihood function
 - Often approximated as MLE and covariance matrix
 - It is what it is, even if we do not like how it looks
- Understand regularisation as shrinkage
 - Picking a "reasonable" point estimate
 - Not to regularise the likelihood function
- Regularised covariance just a visualisation tool?
 - Pick a subset of the allowed region around the point estimate
 - Less correlations, less confusing plots
- Need both for full picture
 - Unregularised data release for "undiluted" likelihood function
 - Regularised result as "better" point estimate
 - Consensus for long time that it would be good to publish likelihood functions
 - Used both in Bayesian and Frequentist analyses



WIENER SVD

- Singular Value Decompostion (SVD) can be used to get left inverse of R and solve the least squares problem
- Apply Wiener filter which maximises signal to noise ratio
 - Assuming a given signal shape
 - Inspired by signal processing
 - This is the regularisation
- - No tunable regularisation strength

 Already "optimized" for the signal to noise ratio

RELATION TO UNREGULARISED RESULT

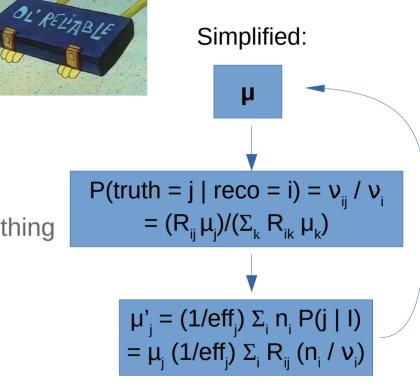
- Wiener SVD yields "additional smearing matrix" A
- It relates regularised result to unregularised one
 - $-\mu' = A\mu$
 - Does this remind you of the shrinkage estimator?
 - $\bigvee' = A \bigvee A^T$
- No need to privde two separate results!
 - Just publish A together with either (μ, V) or (μ', V')
- Better call A "regularisation matrix"?
 - Does not conserve event numbers and can have negative elements

ITERATIVE UNFOLDING /

D'AGOSTINI METHOD

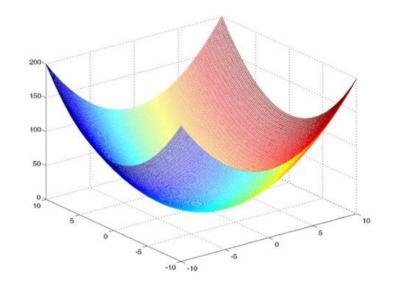
- Also known as Bayesian unfolding
 - Should we be calling it that?
 - It is Bayesian update of priors for 1 iteration
 - It approaches matrix inversion result for inf iterations
 (as long as all µ are positive)
 - "Squeezing the data multiple times" for everything in between?
- # of iterations determines regularisation!
 - Low # → "remembers" first prior → strong regularisation
 - $^-$ (# \rightarrow inf) \rightarrow "forgets" first prior \rightarrow no regularisation
 - Assuming no smoothing in between iterations

https://arxiv.org/abs/1010.063



E.g. https://arxiv.org/abs/2303.14228

- Explicitly treat problem as parameter fit
 - Poisson likelihood in reco bins
 - Parameters of interest **0** that scale cross section in truth bins
 - Systematic nuisance parameters φ
 - Constrained by "priors" = external constraints
 - "Just" need a function -2 log L(θ , ϕ | n) and a minimizer
 - Get MLE & parabolic approximation (covariance)
- Add regularisation / penalty terms explicitly



FREQUENTIST FIT, BAYESIAN PROPAGATION?

- Result of fit contains many nuisance parameters
- Correlated uncertainties need to be propagated to XSECs
- Ideal Frequentist approach
 - For each M-dimensional XSEC, maximise likelihood over parameters
 - Profile likelihood
 - Not trivial
- Pragmatic aproach
 - Throw parameters according to MLE & covariance
 - Calculate XSEC for each throw
 - Usually calculate central value and covariance from sample
 - Could also publish throws in case of non-Gaußian results

ADD REGULARISATION AFTER THE

FACT?

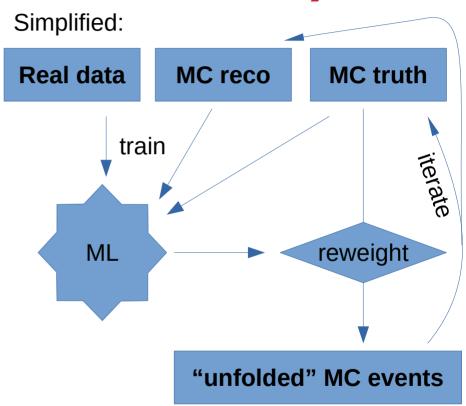
https://doi.org/10.1088/1748-0221/17/10/P10021

- Take inspiration from Wiener SVD
 - Apply regularisation as a matrix multiplication to the unregularised result
- Given any likelihood described as MLE & covariance, adding a Thikonov penalty term leads to a new result
- Can be applied to <u>any</u> unregularised result → post hoc
 - As long as regularised result is close to unregularised one
 - Parabola approximation of log likelihood stays valid

$$\begin{aligned} -2\ln(L(\theta)) &\approx (\theta - \hat{\theta})^T V^{-1}(\theta - \hat{\theta}) + const. \\ P(\theta) &= \theta^T Q \theta \\ -2\ln(L'(\theta)) &= -2\ln(L(\theta)) + P(\theta) \\ &\approx (\theta - \hat{\theta}')^T V'^{-1}(\theta - \hat{\theta}') + const. \\ \hat{\theta}' &= A \hat{\theta} \\ V' &= A V A^T \\ A &= (V^{-1} + Q)^{-1} V^{-1} \end{aligned}$$

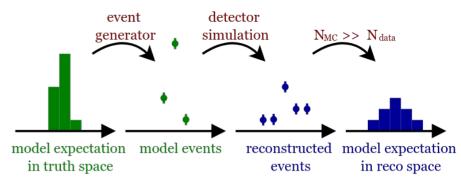
OMNIFOLD (AS I UNDERSTAND IT)

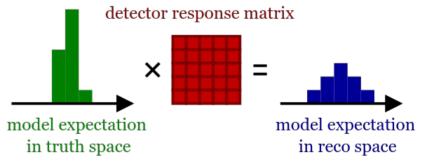
- Use Machine Learning (ML) techniques to create MC reweighter to match MC to measured reco data
 - Based on un-binned event properties
- Re-weighted MC is the "unfolded" result!
 - Can be binneed in any way desired to report a XSEC
- Cutting edge research
 - Just about ready for production use?
 - We will hear more this week!



BACK TO THE ROOTS

- Possible to do science without unfolding
- Compare models with data in reco space
 - But consider detector effects: Forward folding
 - Allows full statistical analysis
 - The data is exactly what we saw: n is aperfectly known fixed number
 - Test whether models are compatible, i.e the predicted v
- How to facilitate use of data by external consumers?
 - Not experts on the detector response
 - No access to (often complicated) simulation frameworks
 - Data needs low entry barrier to be used by many people



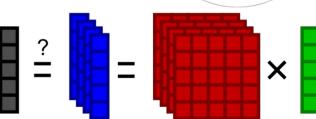


SOFWARE AVAILABLE

- Delphes
 - https://cp3.irmp.ucl.ac.be/projects/delphes
 - Developed for collider experiments
- Rivet
 - https://rivet.hepforge.org/
 - Developed for collider experiments
- ReMU Response Matrix Utilities
 - https://remu.readthedocs.io
 - Developed for neutrino interaction measurements
 - Builds response matrices and uncertainties from MC
 - Fully developed statistical model of detector, flux, and MC stat uncertainties

https://iopscience.iop.org/article/10.1088/1748-0221/14/09/P0 9013

Lukas Koch



DISCUSSION STARTERS

- Unregularised result is best approximation of Likelihood
 - e.g. for fits and statistical tests of models
- Regularisation should be used to pick a representative point estimate
 - e.g. for plots
- We should always make likelihood function available
 - Unregularised result or something more complicated
 - Wiener SVD and post-hoc regularisation make this trivially easy
 - Added bonus: regularisd and unregularised result are directly related

- Include as many method details as possible in your papers
 - Lots of nuances, caveats, assumptions...
 - Not practical to spell out every single check/study/approximation
 - Or ist it?
 - Dedicated method paper?
 - Have to take papers at face value
 - Trust in what is written
 - Assume the worst about what is not written?
 - Assume the best?
 - Hope for the best but expect the worst?

UNFOLD SOME THINGS!

- Poisson counting experiment w/ 3 bins
- Unfold and estimate true expectation values (MLE & COV)
- Calculate p-values of μ₁ and μ₂
- Forward-fold $\mu_{1/2}$
- Calcualte p-values in reco space
- Play around!
 - In-/decrease smearing
 - Plot results
 - Regularize ...

$$R = \begin{pmatrix} 0.5 & 0.2 & 0.2 \\ 0.3 & 0.6 & 0.3 \\ 0.2 & 0.2 & 0.5 \end{pmatrix}$$

$$n = \begin{pmatrix} 48 \\ 81 \\ 62 \end{pmatrix}$$

$$\mu_1 = \begin{pmatrix} 50 \\ 100 \\ 50 \end{pmatrix}$$

$$\mu_2 = \begin{pmatrix} 40 \\ 90 \\ 100 \end{pmatrix}$$

"Good physicists do have priors and always use them! (Only the perfect idiot has no priors.)

> – G. D'Agostini arXiv:1010.0632

"Note that venerable proverb: Children and fools always speak the truth.

– Mark Twain
 On the Decay of the Art of Lying

Thanks!

Backup

EXAMPLE PENALTY MATRICES

$$\tau Q_1 = \tau \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \\ \vdots & & \ddots \end{pmatrix}$$

Penalise bin-to-bin differences

Penalise bin-to-bin model scaling differences

$$\tau Q_{1m} = \tau \begin{pmatrix} 1/m_1^2 & -1/(m_1 m_2) & 0 & 0 \\ -1/(m_1 m_2) & 2/m_2^2 & -1/(m_2 m_3) & 0 & \dots \\ 0 & -1/(m_2 m_3) & 2/m_3^2 & -1/(m_3 m_4) & 0 \\ 0 & 0 & -1/(m_3 m_4) & 2/m_4^2 & \dots \end{pmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

25 JG U

TWO WAYS OF INTERPRETING A

- Coordinate transformation
- New result describes exactly the same distribution, but with different axes
 - No information lost
- Intuitive in 2D
- Axes of histograms no longer make sense

- Modification of result
- Coordinate axes stay the same, but distribution changes Change of result
- Axes and bin values retain same meaning

