Imperial College London

Inelastic scattering; meson production Lecture 3

Minoo Kabirnezhad m.kabirnezhad@imperial.ac.uk

NuSTEC 2024 June 10, 2024

Who am I and why pion production?

- Studied at the International Centre for Theoretical Physics (ICTP).
- Joined the T2K experiment for my PhD project.
- Identified discrepancies between model predictions for pion production, event generators, and experimental data.
- Noticed a gap in understanding between theorists and experimentalists regarding the requirements for neutrino experiments.

Who am I and why pion production?

 Goal: Develop innovative approaches for building models that maximize our ability to extract and interpret key physics measurements.

Rein-Sehgal model (1981)

- Describes the resonant production based on a quark model proposed by Feynman-Kislinger-Raundal (FKR)
- FKR Hamiltonian is given by the four-dimensional harmonic oscillator: $\mathcal{H} = 3(p_a^2 + p_b^2 + p_c^2) + \frac{1}{36}\Omega^2[(u_a - u_b)^2 + (u_b - u_c)^2 + (u_c - u_a)^2 + \text{const.}$ Where p_a is 4-momentum operator of quark a and $p_{a\mu} = i(\frac{\partial}{\partial u_a^u})$. Parameter Ω is determined from the Regge slope of baryon trajectories

Rein-Sehgal model (1981)

 The quark model proposed by Feynman-Kislinger-Raundal (FKR) is given by the four-dimensional harmonic oscillator Hamiltonian:

 $\mathcal{H} = 3(p_a^2 + p_b^2 + p_c^2) + \frac{1}{36}\Omega^2[(u_a - u_b)^2 + (u_b - u_c)^2 + (u_c - u_a)^2 + \text{const.}$

• Hamiltonian can be written in terms of annihilation and creation operators.

$$\begin{aligned} \mathcal{H} &= (p_a + p_b + p_c)^2 - \Omega \big(a_{\mu}^* a^{\mu} + b_{\mu}^* b^{\mu} \big) + \text{const.} \\ & \left[a_{\mu}, a_{\nu}^* \right] = \left[b_{\mu}, b_{\nu}^* \right] = -g_{\mu\nu} \end{aligned}$$

Rein-Sehgal model (1981)

• Hadron current can be described by creation operator a (transition from the ground state, the nucleon) spin operators $(1, \sigma)$ and isospin operators $(1, \tau)$. For charged current:

$$F_{\pm}^{V,A} \propto \tau^{+} (R^{V,A}\sigma_{\pm} + R^{V,A}\sigma_{\mp})e^{-a_{z}}$$
$$(F_{0}^{\lambda})^{V} \propto \tau^{+}Se^{-a_{z}}, \qquad (F_{0}^{\lambda})^{A} \propto \tau^{+}(C\sigma_{z} + B\sigma.a)e^{-a_{z}}$$

•
$$\epsilon^{\mu} J^{V,A}_{\mu} = C_L e^{\alpha}_L J_{\alpha} + C_R e^{\alpha}_R J_{\alpha} + C_{\lambda} e^{\alpha}_{\lambda} J_{\alpha}$$

 $\epsilon^{\mu} J^{V,A}_{\mu} = C_L F_- + C_R F_+ + C_{\lambda} F_0^{\lambda}$

Rein-Sehgal (1981) vs Berger-Sehgal (2007)

- In Rein-Sehgal $m_l = 0$ in CC ν -interactions. Therefore, lepton current is left-handed ($\lambda = -$).
- In Berger-Sehgal $m_l \neq 0$ in CC ν -interactions. Therefore, $\lambda = \mp$.

$$\epsilon^{\mu} J^{V,A}_{\mu} = C_L F_- + C_R F_+ + C_{\lambda} F_0^{\lambda}$$

- Therefore in the BS (RS) model we have 16 (12) helicity amplitudes because polarization of the gauge boson change $4 \rightarrow 3$.
- If we ignore lepton mass, the gauge boson polarisation in CC neutrino will be like gauge photon in electron interaction.

Rein (Berger)- Seghal model

- It is based on a quark model which is not what we expect for non-perturbative region.
- It is not a full kinematic model. The helicity amplitudes are **not** a function of pion angles! $d \sigma/dW dQ^2$
- Pion angles are described by density matrix. NEUT and GENIE only implemented the Δ resonance.
- It does not cover non-resonant interaction. It define an ad-hoc term based on spin ½ resonances. This is implemented in NEUT.
- It uses simple (dipole) form-factors for all resonances.

Why do we still use RS (BS) model?

- It is the default model used in both **NEUT** and **GENIE**.
- It is based on helicity amplitudes therefore it is not computationally expensive; suitable for event generators
- It describes all resonances in the resonance region (W<2 GeV).</p>
- The model offers flexibility, allowing the dipole form factor to be adjusted. This enables the variation of parameters to evaluate systematic uncertainties.

Imperial College London

Minoo Kabirnezhad

Why do we still use RS (BS) model?

It use relativistic Breit–Wigner parameterization instead of Decay amplitudes amplitudes in the FKR model.

$$\langle N\pi, \lambda_2 | \varepsilon_{\lambda}^{\alpha} F_{\alpha} | N, \lambda_1 \rangle = \langle N\pi, \lambda_2 | R\lambda_R \rangle \langle R\lambda_R | \varepsilon_{\lambda}^{\alpha} F_{\alpha} | N\lambda_1 \rangle$$

• Decay amplitudes:

$$\langle N\pi, \lambda_2 | R, \lambda_R \rangle \propto \frac{-1}{W - M_R + i\Gamma_R/2},$$

 $\Gamma_R \propto \Gamma_0$ (Resonance width)

Imperial College London Resonance M_R Γ_0 χ_E $P_{33}(1232)$ 1232 117 1 $P_{11}(1440)$ 1430 350 0.65 $D_{13}(1520)$ 1515 115 0.60 $S_{11}(1535)$ 1535 150 0.45 $P_{33}(1600)$ 1600 320 0.181630 140 0.25 $S_{31}(1620)$ 1655 $S_{11}(1650)$ 140 0.70 $D_{15}(1675)$ 1675 150 0.40 $F_{15}(1680)$ 1685 130 0.67 $D_{13}(1700)$ 1700 150 0.12 $D_{33}(1700)$ 1700 300 0.15 $P_{11}(1710)$ 1710 1000.12 $P_{13}(1720)$ 1720 2500.11 $F_{35}(1905)$ 1880330 0.12 $P_{31}(1910)$ 1890 2800.22 $P_{33}(1920)$ 1920 2600.12 $F_{37}(1950)$ 1930 285 0.40

Minoo Kabirnezhad

Breit-Wigner amplitudes

• Broad states like resonances in the final state, can be replaced by a spectral function of the particle. In the resonance rest frame:

$$\delta(p_R^2 - M_R^2) = \frac{1}{2M_R} \delta(W - M_R)$$
$$= \frac{1}{2M_R} \frac{1}{\pi} \lim_{\varepsilon \to 0} \frac{\varepsilon}{W^2 + \varepsilon^2}.$$
$$\delta(p_R^2 - M_R^2) \to \mathscr{A}(p_R) = \frac{1}{2M_R} \frac{1}{\pi} \frac{\Gamma_R/2}{(W - M_R)^2 + \Gamma_R^2/4}$$

Why do we still use RS (BS) model?

- It is based on helicity amplitudes therefore it is not computationally expensive; suitable for event generators
- It describes all resonances in the resonance region (W<2 GeV).</p>
- It use relativistic Breit–Wigner parameterization instead of Decay amplitudes amplitudes in the FKR model.
 - It is the default model used in both **NEUT** and **GENIE**.

Imperial College London

Resonance	M_R	Γ_0	χ_E
$P_{33}(1232)$	1232	117	1
$P_{11}(1440)$	1430	350	0.65
$D_{13}(1520)$	1515	115	0.60
$S_{11}(1535)$	1535	150	0.45
$P_{33}(1600)$	1600	320	0.18
$S_{31}(1620)$	1630	140	0.25
$S_{11}(1650)$	1655	140	0.70
$D_{15}(1675)$	1675	150	0.40
$F_{15}(1680)$	1685	130	0.67
$D_{13}(1700)$	1700	150	0.12
$D_{33}(1700)$	1700	300	0.15
$P_{11}(1710)$	1710	100	0.12
$P_{13}(1720)$	1720	250	0.11
$F_{35}(1905)$	1880	330	0.12
$P_{31}(1910)$	1890	280	0.22
$P_{33}(1920)$	1920	260	0.12
$F_{37}(1950)$	1930	285	0.40

Minoo Kabirnezhad

Rein (Berger)- Sehgal model in **NEUT**

- It is not a full kinematic model. The helicity amplitudes are not a function of pion angles! $d\,\sigma/dW\,dQ^2$
- Pion angles are described by density matrix. NEUT **only** implemented the Δ resonance.
- It does not cover non-resonant interaction. It define an ad-hoc term based on spin ½ resonances. It includes interference between resonances. No interference effect.
- Two options for resonance form-factors: dipole (RS) and Graczyk-Sobczyk form-factor.

Rein (Berger)- Sehgal model in **GENIE**

- It is not a full kinematic model. The helicity amplitudes are not a function of pion angles! $d\,\sigma/dW\,dQ^2$
- Pion angles are described by density matrix. GENIE **only** implemented the Δ resonance.
- It does not cover non-resonant interaction as described here, but it is simulated by DIS contribution (<u>GENIE v3</u>). No interference effect.
- It **doesn't include** interference between resonances.
- Two options for resonance form-factors: dipole (RS) and Graczyk-Sobczyk form-factor.

Improving Rein (Berger)- Seghal model

- It is not a full kinematic model. The helicity amplitudes are **not** a function of pion angles! $d \sigma/dW dQ^2$
- Pion angles are described by density matrix. NEUT and GENIE only implemented the Δ resonance.
 - It does not cover non-resonant interaction
- The nonresonant interaction was added to the BS model in the First version of MK model 2018
- The output of the MK model is full kinematic $d \sigma/dW \, dQ^2 d\Omega_{\pi}$

Effects we are expecting to see

pion angles
 nonresonant and interference

Pion angle modifications

• Pion polar angular distribution in Adler frame

Pion angle modifications

- "Only Δ " has a symmetric distribution.
- Any deviation from the symmetric distribution comes from the interference effects.

Pion angle modifications

- Isospin symmetry allows only resonances with isospin 3/2 in $\nu_{\mu}p \rightarrow \mu p \pi^{+}$ channel and mainly Δ resonance. Therefore the shape of angular momentum is not changing much.
- According to isopspin symmetry, isospin $\frac{1}{2}$ resonances have dominant contribution in the $\nu_{\mu}n \rightarrow \mu n\pi^{+}$ channel.
- This is for T2K energy ($E_{\nu} \sim 0.6$ GeV). This is more significant for higher energy like DUNE!

Improving pion angle and momentum (2018)

Better predictions at low p_{π} (compare to RS model in NEUT) is due to the non-resonant contributions and the interference effects.

Improving muon angle and momentum (2018)

T2K CC1 π^+ data

From Dan Cherdack talk at NuInt 18

Improving muon angle and momentum (2018)

• This reduction is due to the better prediction for pion momentum.

From Dan Cherdack talk at NuInt 18

Improving T2K analysis

• T2K also noticed this low pion momentum proble

T2K prefit and post muon fit (2017)

MK-model and T2K analysis

- MK-model has been used as pseudodata to see if it causes issue in our current analysis (underestimated systematics).
- Although bias is small with respect to the uncertainty right now, clearly mis-modelling can produce biased oscillation parameters, and this will be a serious problem for next generation experiments.

What MK model couldn't improve

• Low Q² predictions from axial current.

Review of other resonance model

Adler model (1968)

- describes weak single-pion production in the first resonance region (only Δ resonance).
- Using linear sigma model for non-resonant interaction i.e three born diagrams (lecture 2)
- cross section is calculated from helicity amplitudes and multipoles.
- Multipoles are helicity amplitudes for definite angular momentum.

Lalakulich-Paschos (LP) model (2005)

- describes the resonances in the first and the second resonance region (4 resonances) using the Rarita-Schwinger (Lecture 2) and used Breit-Wigner amplitudes instead of Δ propagator.
- The relativistic Breit–Wigner parameterization represents a <u>dressed</u> <u>propagator</u> for an isolated resonance.
- They used MAID helicity amplitudes results to parameterise the resonances vector form factors.

Reminder: Resonance production (spin 3/2)

• $J_{3/2}^{\mu} = \overline{\psi}_{\nu}(p')\Gamma_{3/2}^{\nu\mu}u(p)$, $\overline{\psi}_{\nu}$ is Rarita-Schwinger spinor for S=3/2 resonances and $\Gamma_{3/2}^{\nu\mu}$ is the weak WNR_{3/2}vertex

• For positive parity:
$$\Gamma_{3/2+}^{\nu\mu} = \left(\mathcal{V}_{3/2}^{\nu\mu} - \mathcal{A}_{3/2}^{\nu\mu}\right)\gamma^5$$

• For negative parity:
$$\Gamma^{\mu}_{3/2-} = \left(\mathcal{V}^{\mu}_{3/2} - \mathcal{A}^{\mu}_{3/2}\right)\mathbb{I}$$

•
$$\mathcal{V}_{3/2}^{\nu\mu} = \frac{\mathcal{C}_{3}^{V}}{M} (g^{\nu\mu} \not{q} - q^{\nu} \gamma^{\mu}) + \frac{\mathcal{C}_{4}^{V}}{M^{2}} (g^{\nu\mu} q. p' - q^{\nu} p'^{\mu}) + \frac{\mathcal{C}_{5}^{V}}{M^{2}} (g^{\nu\mu} q. p - q^{\nu} p^{\mu}) + g^{\nu\mu} \mathcal{C}_{6}^{V}$$

• $-\mathcal{A}_{3/2}^{\mu} = [\frac{\mathcal{C}_{3}^{A}}{M} (g^{\nu\mu} \not{q} - q^{\nu} \gamma^{\mu}) + \frac{\mathcal{C}_{4}^{A}}{M^{2}} (g^{\nu\mu} q. p' - q^{\nu} p'^{\mu}) + \mathcal{C}_{5}^{A} g^{\nu\mu} + \frac{\mathcal{C}_{6}^{V}}{M^{2}} q^{\nu} q^{\mu}] \gamma^{5}$

Graczyk-Sobczyk form factor

- Equate the helicity amplitudes from the RS model with those in the LP model using the Rarita-Schwinger formalism.
- Partially solve the equations to extract a new form factor for the RS model (only for the Δ resonance), incorporating information from the LP model.

$$\begin{aligned} G_V^{RS,new}(W,Q^2) &= \frac{1}{2} \left(1 + \frac{Q^2}{(M+W)^2} \right)^{\frac{1}{2}} \left(1 + \frac{Q^2}{4W^2} \right)^{-\frac{N}{2}} \sqrt{3(G_3(W,Q^2))^2 + (G_1(W,Q^2))^2} \\ G_3(W,Q^2) &= \frac{1}{2\sqrt{3}} \left[C_4^V \frac{W^2 - Q^2 - M^2}{2M^2} + C_5^V \frac{W^2 + Q^2 - M^2}{2M^2} + \frac{C_3^V}{M} (W + M) \right], \\ G_1(W,Q^2) &= -\frac{1}{2\sqrt{3}} \left[C_4^V \frac{W^2 - Q^2 - M^2}{2M^2} + C_5^V \frac{W^2 + Q^2 - M^2}{2M^2} - C_3^V \frac{(M + W)M + Q^2}{MW} \right] \end{aligned}$$
College

Imperial Co London

Hernandez et al. (HNV) model (2007)

- Introduced non-resonant mechanism from the non-linear chiral Lagrangian (lecture 2).
- describes the resonances in the first and the second resonance region (4 resonances) using the Rarita-Schwinger (Lecture 2) and the Δ propagator.
- Used form factors from Lalakulich-Paschos fit for resonant interaction.
- The model is partially unitarized by imposing Watson theorem

E. Hernandez, J. Nieves and M. Valverde, Phys. Rev. D **76** (2007) 033005

Hybrid model (2017)

R. González-Jiménez, et al Phys. Rev. D **95** (2017)

- Using HNV model (previous slide)
- Extends the validity of the non-resonant model by using a Regge approach. (Lecture 2)
- The model combined low-W (ChPT) and high-W (ReChi) models in a phenomenological way, into a hybrid model.

Dynamic Couple Channel (DCC) model (2015)

- Solving a coupled channel equation for the Δ(1232) and higher resonances.
- The model includes resonant and non-resonant amplitudes, respecting the unitarity relation.
- Combine analysis to determine vector form-factors. All parameters $(\sim 440 + 406)$ for vector form factor and others for resonance mass and phases) are fixed (determined) in the analysis.
- Dipole axial form factor with $m_A = 1.02$ satisfying PCAC.
- The systematic uncertainties are not evaluated.

Nakamura et al. Phys. Rev. D 92, 074024 (2015)

MK model

M. Kabirnezhad <u>Phys. Rev. D 97 (2018)</u> <u>Phys. Rev. D 102 (2020)</u> <u>Phys.Rev.C 107 (2023)</u>

The MK model comprehensively describes single-pion production in interactions involving **photons**, **electrons**, **and neutrinos** with nucleons.

- Meson Dominance (MD) form factor: Maintains unitarity and integrates QCD principles for both resonant and non-resonant interactions. (Lecture 2)
- CVC and PCAC fulfilment: Ensures model consistency at low Q².
- Q² evolution: Utilises QCD calculations and quark-hadron duality.
- W evolution: Applies **Regge trajectory** and the Hybrid model.

R. González-Jiménez, et al Phys. Rev. D **95** (2017)

How to define form factors in weak interaction

- Resonance phase space spans both perturbative and non-perturbative regimes, posing modelling challenges.
- Phenomenological models in this region must account for numerous processes and parameters.
- A unified model is essential for interpreting all interactions and maximising data utilisation.

Similar hadronic currents

MK model

Resonant interaction

 Several resonances contribute at different invariant mass (W)

Non-resonant bkg

- Chiral perturbation at low W < 1.4 GeV
- Regge trajectory at high W
- Hybrid model

MK model

- Meson Dominance (MD) model describes form-factors in nonperturbative domain
- It can reproduce Q²evolution of formfactors to asymptotically join QCD expectations

Imperial College

London

Valid kinematic region region for MK model

Minoo Kabirnezhad

Data used in the Joint analysis

# data point	Photon, electron, pion, Neutrino Channels	Q ² Range (GeV/C) ²	W Range GeV	Form Factors
≈ 9800	$\gamma \: p \to n + \pi^+ \:, \:\: \gamma p \to p + \pi^0$	0	1.08 – 2.0	Proton
≈ 31000	$ep \rightarrow en + \pi^+, ep \rightarrow ep + \pi^0$	0.16 - 6.0	1.08 – 2.0	Vec
≈ 2500	$\gamma n \rightarrow p + \pi^-$	0	1.08 – 2.0	Neutron g
≈ 700	NEW en \rightarrow ep + π^-	0.4 - 1.0	1.08 - 1.8	
≈ 400	$\pi^+ p \rightarrow p + \pi^+, \ \pi^- p \rightarrow p + \pi^-$	0	1.08 – 2.0	
<100	$\nu N \rightarrow l^- N + ~\pi$, $\overline{\nu} N \rightarrow l^+ N + \pi$	Q ² >0 Integrated	1.08 – 2.0 Integrated	Axial-Vector

 Select Data in 1.08<W<1.28 GeV region to choose the best ∆ and bkg form factors.

 Add data in 1.28<W<1440 MeV to choose the best P11(1430) resonance's form factor and best bkg_cut.

 Add data in 1440<W<1540 MeV region to choose D13(1520) + S11(1530) form factorsand the best bkg cut.

Add data in 1540<W<1640
 MeV region to P33(1570)+
 S31(1620) form factor.

In the final step all the parameters in the formfactors and the phases between these resonances and the nonresonant helicity amplitudes were fit. Data/models comparison at low Q²

Data/models comparison at high Q²

M. Kabirnezhad <u>Phys.Rev.C</u> 107 (2023)

• Only MAID model provide prediction for high Q^2

MK model prediction after a joint-fit

Systematic Uncertainties

- Systematic uncertainties are assessed by employing the covariance (correlation) matrix.
- They can be used to evaluate systematic uncertainties in neutrino measurements.
- 105+33 parameters for vector and axial form factor

Imperial College London

Minoo Kabirnezhad

Axial current

Axial vs vector currents

What MK model couldn't improve

 The PCAC relation allows us to utilize pion scattering data at Q2=0Q^2 = 0Q2=0. At low Q2Q^2Q2 (<0.2 GeV), the axial current predominates due to the conservation of the vector current.

Improving the axial current using PCAC

 Using pion elastic scattering data on hydrogen to fit the axial formfactors at Q²=0.

Neutrino data: ANL & BNL

- In the ANL experiment, data were initially taken with a hydrogen fill of the bubble chamber, and then data were taken with a deuterium fill for the remainder of the experiment.
- Event rates are only available as a **combination** of both hydrogen (30%) and deuterium fills of the detector.
- In the BNL experiments results are separated into hydrogen and deuterium measurements.
- There is no measurement for single pion production on hydrogen.

Available cross-section data: ANL

Neutrino data Used in the joint analysis

- 1. ANL & BNL measurements on Deuterium or mixed with Hydrogen targets ($E_{\nu} \approx$ 1 GeV)
 - Employing the ratio of channels in the joint fit

$$R = \frac{\sigma[\nu p(n_s) \to \mu p \pi^+(n_s)]}{\sigma[\nu n(p_s) \to \mu n \pi^+(p_s)]}$$

- 2. BEBC measurements on Hydrogen & Deuterium ($E_{\nu} \approx 20 \text{ GeV}$)
 - Employing data on hydrogen and utilising the ratio of channels on deuterium in the fit
 - Despite high energy beam, cross-section is measured at low Q² and W

Defining Vector + axial form factor in a joint fit

Highlight : NC channels

- Data from NC channels are exceptionally rare.
- The model successfully describes both electromagnetic and weak interactions simultaneously, and ensures rigorous control over the NC vector current.
 - $V_{1,2,3}^{\mu}$ form a vector in isospin space (isovector current).
 - V_Y^{μ} is hypercharge current

$$\begin{split} J^{\mu}{}_{EM} &= \frac{1}{2} V^{\mu}_{Y} + V^{\mu}_{3} \\ J^{\mu}{}_{CC} &= V^{\mu}_{1} + i V^{\mu}_{2} \\ J^{\mu}{}_{NC} &= (1 - 2 \sin^{2} \theta_{W}) V^{\mu}_{3} - \sin^{2} \theta_{W} V^{\mu}_{Y} \end{split}$$

Highlight : NC channels

- Data from NC channels are exceptionally rare.
- The model successfully describes both electromagnetic and weak interactions simultaneously, and ensures rigorous control over the NC vector current.
- Event generators can not be tuned with very few bubble chamber data
- $\nu_{\mu} + p \rightarrow \nu_{\mu} p \pi^0$ is the main background for electron

neutrino vs anti-neutrino

- By employing an advanced model for the form factors and incorporating data from both neutrino and anti-neutrino interactions, we can ensure a reliable prediction for both types of interactions.
- This is extremely important for measuring CP-violation!

neutrino vs anti-neutrino)

Integrated cross section

Backup

Axial current parametrisation

- Due to the scarcity of neutrino data, parameters must be minimised.
- The chiral symmetry of strong interactions dictates that the coupling constants of left and right fields must be equal, resulting in identical asymptotic behavior for vector and axial form factors.
- Chiral symmetry reduces the number of parameters in the axial form factors.

Highlight 3: Low Q² region

- The model is designed to address the low Q² region, where existing models struggle to predict empirical data:
 - 1. For the vector current, it incorporates Conserved Vector Current (CVC) principles and photon scattering data.
 - 2. For the axial current, it utilises Partially Conserved Axial Current (PCAC) principles and pion scattering data.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}W}\Big|_{Q^2=0} \propto \sigma(\pi N \to \pi N)$$

Existing form-factors determination

• Helicity amplitudes for spin 3/2

$$\begin{split} A_{3/2} &\propto \left\langle R, +\frac{3}{2} \left| J_{em} \cdot \epsilon^{(R)} \right| N, +\frac{1}{2} \right\rangle \\ A_{1/2} &\propto \left\langle R, +\frac{1}{2} \left| J_{em} \cdot \epsilon^{(R)} \right| N, -\frac{1}{2} \right\rangle \\ S_{1/2} &\propto \left\langle R, +\frac{1}{2} \left| J_{em} \cdot \epsilon^{(S)} \right| N, +\frac{1}{2} \right\rangle \end{split}$$

MAID "data": Helicity amplitudes for $P_{33}(1232)$ resonance

Existing form-factors determination

• Some of neutrino models, utilized the helicity amplitudes determined in the MAID analysis to extract form factors.

$$C_3^{(p)} = \frac{2.13/D_V}{1+Q^2/4M_V^2},$$

$$C_4^{(p)} = \frac{-1.51/D_V}{1+Q^2/4M_V^2},$$

$$C_5^{(p)} = \frac{0.48/D_V}{1+Q^2/0.776M_V^2}.$$

$$D_V = \left(1 + \frac{Q^2}{M_V^2}\right)^2$$
, $M_V = 0.84 \ GeV$

Imperial College London

Fitted model to MAID analysis for $P_{33}(1232)$ resonance. From Lalakulich et. al. (2006)

Meson Dominance (MD) model

- The MD model is rooted in the effective Lagrangian of quantum field theory.
 - 1. J. J. Sakurai, Annals Phys.11, 1 (1960)
 - 2. M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961)
- It establishes connections between vector and axial currents and corresponding meson fields with analogous quantum properties.
- This framework explains the interaction between neutrinos and nucleons through meson exchange.

Meson Dominance (MD) model

 MD form factors can be expressed in terms of the meson masses and the coupling strengths, summing over all possible mesons:

$$F_{N}(Q^{2}) = \sum_{j=1}^{n} \frac{m_{j}^{2}}{m_{j}^{2} - Q^{2}} \left(\frac{f_{h}}{f_{b}}\right)$$

 Although they do not inherently comply to the unitarity condition (analytic model) or accurately predict behaviour at high Q², they can be imposed!

Imperial College London

C. Adamuscin *et al*. Eur. Phys. J. C 28, 115 (2003)

k	ρ -group	$m_{(ho)k}[{ m GeV}]$	ω -group	$m_{(\omega)k}[{ m GeV}]$
1	$\rho(770)$	0.77526	$\omega(782)$	0.78265
2	$\rho(1450)$	1.465	$\omega(1420)$	1.410
3	$\rho(1700)$	1.720	$\omega(1650)$	1.670
4	ho(1900)	1.885	$\omega(1960)$	1.960
5	$\rho(2150)$	2.150	$\omega(2205)$	2.205
k	a_1 -group	$m_{(a_1)k}[{\rm GeV}]$	f_1 -group	$m_{(f_1)k}[{ m GeV}]$
1	$a_1(1260)$	1.230	$f_1(1285)$	1.2819
2	$a_1(1420)$	1.411	$f_1(1420)$	1.4263
3	$a_1(1640)$	1.655	$f_1(1510)$	1.518
4	$a_1(2095)$	2.096	$f_1(1970)$	1.1971

Meson Dominance (MD) model

Representation of electron scattering:

Non-perturbative (low Q²)

• Vector mesons propagate between the virtual photon and the nucleon

Perturbative (high Q²)

 schematic quark model of VMD model

Asymptotic behaviour of form factor

- At large Q2, resonance form factors must align with the perturbative QCD constraints.
- For spin 3/2 resonance:

G. Vereshkov and N. Volchanskiy (PRD 2007)

$$F_{\alpha}(Q^{2}) \cong \left(\frac{4M_{N}^{2}}{Q^{2}}\right)^{p_{\alpha}} \frac{f_{\alpha}}{\ln^{n_{\alpha}} \left(\frac{q^{2}}{\Lambda_{QCD}^{2}}\right)}, \qquad (\alpha = 1 - 3)$$

$$p_{1} = 3, p_{2} = p_{3} = 4,$$

$$n_{3} > n_{1} > n_{2}, \qquad n_{1} \cong 3$$

MD form factors used in the model

• For spin 3/2 resonance:

$$F_{\alpha}(Q^{2}) = \frac{f_{\alpha}}{L_{\alpha}(Q^{2})} \sum_{k=1}^{K} \frac{a_{\alpha k} m_{k}^{2}}{m_{k}^{2} + Q^{2}}, \qquad (\alpha = 1 - 3)$$

$$L_{\alpha}(Q^{2}) = \left[1 + g_{\alpha} \ln\left(1 + \frac{Q^{2}}{\Lambda_{QCD}^{2}}\right) + h_{\alpha} \ln^{2}\left(1 + \frac{Q^{2}}{\Lambda_{QCD}^{2}}\right)\right]^{n_{\alpha}} \quad n_{1} = 3, n_{2} = 2, n_{3} = 4$$
$$\Lambda_{QCD} \in [0.19 - 0.24] \text{ GeV}$$

• $a_{\alpha k}$ and $b_{\beta k}$ are constrained by unitarity conditions that also satisfy asymptotic QCD requirements.

Nonresonant pion production (linear σ -model)

- Is based on SU(2)×SU(2) chiral symmetry, consistent with the symmetries of QCD.
- The ingredients of the model are Nucleon and pion fields plus an scalar σ field.
- The Lagrangian is linear with pion field.
- Three possible (Born) diagrams is the result of the linera σ model.
- There is no experimental evidence for σ particle

Nonresonant pion production (non-linear σ -model)

- Is based on SU(2)×SU(2) chiral symmetry, consistent with the symmetries of QCD.
- The ingredients of the model are Nucleon and pion fields.
- The Lagrangian is **not** linear with pion field.
- Five possible (Born) diagrams is the result of the **non**-linear σ model.
- Low energy Chiral Perturbative Theory (ChPT) is valid at low energy.

E. Hernandez, J. Nieves and M. Valverde, Phys. Rev. D **76** (2007) 033005
Nonresonant pion production

$$\mathcal{M}_{NP}^{CC} = \frac{g_A}{\sqrt{2}f_{\pi}} \cos\theta_C \frac{1}{s-M} \bar{u}(p_2) \not A \gamma_5(\not p_1 + \not k + M) \epsilon^{\mu} \Gamma_{\mu}^{CC} u(p_1)$$

$$\mathcal{M}_{CNP}^{CC} = \frac{g_A}{\sqrt{2}f_{\pi}} \cos\theta_C \frac{1}{u-M} \bar{u}(p_2) \epsilon^{\mu} \Gamma_{\mu}^{CC}(\not p_2 - \not k + M) \not A \gamma_5 u(p_1)$$

$$\mathcal{M}_{PF}^{CC} = \frac{g_A}{\sqrt{2}f_{\pi}} \cos\theta_C \frac{1}{t-m_{\pi}^2} F_{PF}(k^2) \bar{u}(p_2) \gamma_5 [2q\epsilon - k\epsilon] u(p_1)$$

$$\mathcal{M}_{CT}^{CC} = \frac{1}{\sqrt{2}f_{\pi}} \cos\theta_C \bar{u}(p_2) \epsilon^{\mu} \gamma_{\mu} [g_A F_{CT}^V(k^2) \gamma_5 - F_{\rho}((k-q)^2)] u(p_1)$$

$$\mathcal{M}_{PP}^{CC} = \frac{1}{\sqrt{2}f_{\pi}} \cos\theta_C \bar{u}(p_2) \frac{\epsilon k}{k^2 - m_{\pi}^2} \not k u(p_1)$$

Imperial College London

Minoo Kabirnezhad

Hybrid Model for nonresonant pion production

• Use ChPT model at low energy (W).

R. González-Jiménez, et al Phys. Rev. D **95** (2017)

 Use Regge formalism at high energy (W). Regge Theory provides the high energy (s→∞) behavior of the amplitude:

London

 $-m_{\pi}^{2}$ The pion propagator

The pion propagator is replace by the Regge trajectory of the pion family

$$\mathcal{P}_{\pi}(t,s) = -\alpha'_{\pi}\varphi_{\pi}(t)\Gamma[-\alpha_{\pi}(t)](\alpha'_{\pi}s)^{\alpha_{\pi}(t)}$$

From Raúl González Jiménez Presentation

Minoo Kabirnezhad

Hybrid Model for nonresonant pion production

- Use ChPT model at low energy (W).
- Use Regge formalism at high energy (W).

R. González-Jiménez, et al Phys. Rev. D **95** (2017)

$$\frac{1}{t - m_{\pi}^{2}}$$
The pion propagator is replace by the Regge trajectory of the pion family
$$\pi(t, s) = -\alpha_{\pi}' \varphi_{\pi}(t) \Gamma[-\alpha_{\pi}(t)] (\alpha_{\pi}' s)^{\alpha_{\pi}(t)}$$

From Raúl González Jiménez Presentation

Minoo Kabirnezhad

 \mathcal{P}

Quark-hadron duality

- It was observed about 50 years ago.
- The resonances oscillate around an average scaling curve.
- Scaling behaviour would imply that the nucleon target appears as a collection of point-like constituents when probed at very high energies in DIS.
- Establishes a relationship between the quark–gluon description, and the hadronic description.

Imperial College

London

From I. Niculescu et al.

