Connections between neutrino interaction physics and astrophysics/astroparticle physics

Hallsie Reno (University of Iowa) NuSTEC Summer School CERN June 10-13, 2024

Work supported in part by the US DOE.

Who am I?

I'm a neutrino phenomenologist interested in neutrino astroparticle physics, neutrino interactions and BSM physics with neutrino (and neutrino-like) signals.

Professor at the University of Iowa (and now department chair), advisor of Luke Kupari who is here!

Also a member of the EUSO-SPB2 balloon mission collaboration and the nuSpaceSim Collaboration.

Introduction

Neutrinos are special!

Multimessenger astrophysics

Neutrinos are special!

Fig. from IceCube/WIPAC

Sources of astrophysical neutrinos

1 TeV = 10^{3} GeV 1 PeV = 10^{6} GeV 1 EeV = 10^{9} GeV 1 ZeV = 10^{12} GeV

Neutrinos arrive at higher energies than from any terrestrial/accelerator source.

Multimessenger connection

Snowmass white paper: Ackermann et al., JHEAp 36 (2022) 55-110 https://arxiv.org/pdf/2203.08096

Neutrino production

Same production mechanism for accelerator beams, inside astrophysical objects, in the atmosphere, and for the cosmogenic neutrino flux.

Plan for lectures

- Neutrino cross sections: DIS and extrapolation to ultrahigh energies (UHE)
- Glashow resonance, sub-leading contributions
- Neutrino detection: across the energies
- Atmospheric neutrinos
- Astrophysical neutrinos: diffuse neutrino flux and transient sources
- Cosmogenic neutrinos: diffuse neutrino flux from cosmic rays in transit through Universe
- Some BSM physics examples with astrophysical neutrinos

Neutrino cross sections at VHE, UHE

Access to these cross sections are only possible with astroparticle sources of neutrinos.

References

For example, and references therein:

- Bertone, Gauld & Rojo, JHEP 01 (2019) 217
- Cooper-Sarkar, Mertsch & Sarkar, JHEP 08:042 (2011)
- Connolly, Thorne & Waters, JHEP 08 (2011) 042
- Garcia et al, JCAP 09 (2020) 025
- Gandhi ... MHR... et al, Phys. Rev. D 58 (1998) 093009
 MHR, Ann Rev Nucl Part Sci 73 (2023) 1

Charged-current cross section at VHE, UHE

$$\frac{d^2\sigma}{dx\,dy} = \frac{2G_F^2 M E_v}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \left[xq(x,Q) + x\overline{q}(x,Q)(1-y)^2\right]$$

Charged-current cross section at VHE, UHE

$$\frac{d^{2}\sigma}{dx\,dy} = \frac{2G_{F}^{2}ME_{v}}{\pi} \left(\frac{M_{W}^{2}}{Q^{2}+M_{W}^{2}}\right)^{2} \left[xq(x,Q) + x\bar{q}(x,Q)(1-y)^{2}\right]$$

 Q^2 dependence in propagator and in PDFs, eventually $Q^2 \sim M_W^2$

(Remember the Q^2 dependence of PDFs is logarithmic.)

$$x \sim \frac{M_W^2}{ME_{\nu}}$$
 gives a rough scaling: $x \sim 10^{-2} \left(\frac{10^6 \text{ GeV}}{E_{\nu}} \right)$

Charged-current cross section at VHE, UHE

gives a rough scaling:

$$x \sim 10^{-2} \left(\frac{10^6 \text{ GeV}}{E_{\nu}} \right)$$

Fig. from Connolly, Thorne & Waters, JHEP 08 (2011) 042

Parton Distribution Functions (PDFs)

Hallsie Reno, University of Iowa

Cross sections

change in energy behavior

CC cross section divided by energy

BGR18 = Bertone, Gauld & Rojo, JHEP 01 (2019) 217 (NNLO+NNLx), CMS11 = Cooper-Sarkar, Mertsch & Sarkar, JHEP 08:042 (2011) (NLO) Figs. from MHR, Ann Rev Nucl Part Sci 2023, blue and green with ct18nlo (NLO) NuSTEC Summer School 2024 Hallsie Reno, University of Iowa

$$\frac{vN}{dx\,dy} = \frac{2G_F^2 M E_v}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \left[xq(x,Q) + x\overline{q}(x,Q)(1-y)^2\right]$$

Notice:

- change in energy behavior
- neutrino and antineutrino cross sections become equal – sea quark dominated
- (for v̄ scattering, the (1-y)² goes to the quark, not antiquark)

 $\begin{array}{ll}
\nu_{\mu}d \to \mu u & \bar{\nu}_{\mu}\bar{d} \to \bar{\mu}\bar{u} \\
\nu_{\mu}\bar{u} \to \mu\bar{d} & \bar{\nu}_{\mu}u \to \bar{\mu}d
\end{array}$

NC/CC ratio is ~ 0.4

Uncertainties in small x

High energy uncertainty

BGR18 = Bertone, Gauld & Rojo, JHEP 01 (2019) 217 (NNLO+NNLx), CMS11 = Cooper-Sarkar, Mertsch & Sarkar, JHEP 08:042 (2011) (NLO); Figs. from MHR, Ann Rev Nucl Part Sci 2023, blue and green with ct18nlo (NLO); Arguelles15 = PRD 92 (2015) 074040 (dipole motivated); Block14 = PRD 89 (2014) 094027 (ln²s form); Albacete15 = PRD 92 (2015) 014027 (dipole model)

More about the high energy cross section

Fig. from Aivazis et al PRD 50 (1994) 3102 (ACOT)

 νN : example

$$Q_1 = d, \ Q_2 = u$$
$$\bar{Q}_2 = \bar{u}, \ \bar{Q}_1 = \bar{d}$$

Leading order, can separate d, \bar{u} but not so at NLO.

Quark flavor contributions to CC cross section

See also Aivazis et al PRD 50 (1994) 3102 (ACOT)

Bertone et al., Eur. Phys. J. C 77 (2017) 837

Average inelasticity in neutrino DIS

CC interactions: v_{τ} , v_{μ} - lepton mass effects

Kinematics plus 2 more structure functions.

$$rac{m_{ au}^2}{2M(E_
u-m_ au)} \ \leq \ x \ \leq \ 1 \ , \ a \ - \ b \ \leq \ y \ \leq \ a \ + \ b \ ,$$

where the quantities a and b are

$$a = \left[1 - m_{\tau}^2 \left(\frac{1}{2ME_{\nu}x} + \frac{1}{2E_{\nu}^2} \right) \right] / (2 + Mx/E_{\nu})$$

$$b = \left[\left(1 - \frac{m_{\tau}^2}{2ME_{\nu}x} \right)^2 - \frac{m_{\tau}^2}{E_{\nu}^2} \right]^{1/2} / (2 + Mx/E_{\nu})$$

Jeong & MHR, PRD 82 (2010) 033010

Glashow resonance

Zhou & Beacom, PRD 101 (2020) 3

Sub-leading cross sections & "hidden Glashow"

MHR, Ann Rev Nucl Part Sci 2023 adapted from Zhou & Beacom, PRD 101 (2020) 036011

Hallsie Reno, University of Iowa

See also, Ballett et al. JHEP 01 (2019) 119

Where is the neutrino cross section measured?

Snowmass white paper: Feng et al., Phys.G 50 (2023) 030501

More on the IceCube measurement later.

ASIDE

FASERv

LHC Run 3

Both experiments installed, in T12 and T18 existing injector tunnels on either side of the ATLAS IP.

p-p collision at IP

of ATLAS

ASIDE

First neutrino events at LHC Run 3: $v_{\mu}CC$ (muons)

FASER Collab, PRL 131 (2023) 031801

NuSTEC Summer School 2024

Hallsie Reno, University of Iowa

SND@LHC Collab, PRL 131 (2023) 031802

ASIDE

Envisioned Forward Physics Facility at the high intensity LHC :

- Neutrinos produced in the forward region related to neutrino production in cosmic ray interaction processes.
- Neutrino measurements in new energy regimes, nuclear targets.

Snowmass white papers <u>short</u>: Anchordoqui et al, 2109.10905 Phys. Rept. 968 (2022) 1 (50 pages) <u>long</u>: Feng et al, 2203.05090 J. Phys. G 50 (2023) 030501 (411 pages) and see references therein!

Jonathan Feng 2:15 AM FPF NEW NAME COMPETITION

Dear Colleagues,

The physics case of the Forward Physics Facility has grown greatly since it was first proposed, and now encompasses neutrino physics, QCD, new particle searches, dark matter and dark sectors, and astroparticle physics. At the same time, for some, "forward physics" brings to mind a set of topics (luminosity measurements, pomerons, etc.) that are not among the main goals of the FPF.

For this reason, we are considering renaming the FPF (possibly) and finding a new logo (definitely). We seek your help.

To propose a new name, please fill out the web form at

https://fpf.web.cern.ch/form/fpf-name-change-competition

by **Wednesday**, **June 26**. Each person can propose up to 5 names. The proposed names will be considered without knowing who proposed them, and the winning entry will be decided by the FPF conveners. If the name is changed, the first person to propose the new name will receive a cash prize of \$200 (not to mention eternal glory).

Neutrino detection through the energies

References

Snowmass white papers and reviews (and references therein):

- Ackermann et al., <u>High-energy and ultra-high-energy neutrinos: A Snowmass</u> white paper, JHEAp 36 (2022) 55-110 <u>https://arxiv.org/pdf/2203.08096</u>
- Mammen Abraham et al., <u>Tau neutrinos in the next decade: from GeV to EeV</u>, J.Phys.G 49 (2022) 110501
- Spiering, <u>Neutrino Detectors Under Water and Ice</u>, <u>https://link.springer.com/chapter/10.1007/978-3-030-35318-6_17</u>
- Barwick & Glaser, <u>Chapter 6: Radio Detection of High Energy Neutrinos in Ice</u>, <u>2208.04971</u>

Neutrino events

Notice how steeply the flux falls relative to the rising neutrino cross section.

Detector sizes – km³ scale detectors

$$N_{\rm evt} = n_{\rm nuc} \cdot V_{\rm det} \cdot 2\pi \cdot \Delta t \int_{10^5 \, {\rm GeV}} dE_{\nu} \sigma_{\rm CC}(E_{\nu}) \Phi_{\nu+\bar{\nu}}(E_{\nu})$$

number of neutrinos

$$n_{\rm nuc} = N_A \rho = 6 \times 10^{23} / \rm cm^3$$

$$\begin{array}{ll} \mbox{how much sky} & E_{\nu}^2 \Phi_{\nu+\bar{\nu}} \simeq 2 \times 10^{-8} \ \frac{\mbox{GeV}}{\mbox{cm}^2 \, {\rm s} \, {\rm sr}} \\ \\ \mbox{obs time} & \frac{N_{\rm evt}}{\rm yr} \simeq 18 \ \frac{V_{\rm det}}{\rm km^3} \end{array}$$

 $\sigma_{\rm CC}(E_{\nu}) \simeq 5 \times 10^{-33} \ {\rm cm}^2 \ (E_{\nu}/10^8 \ {\rm GeV})^{0.33}$

Neutrino events

Notice how steeply the flux falls relative to the rising neutrino cross section.

Neutrino interaction length

Neutrino attenuation in Earth

Water and ice Cherenkov detectors

Speed of the charged particle faster than the speed of light in the medium

$$u > v = \frac{c}{n}$$

https://www-sk.icrr.u-tokyo.ac.jp/en/sk/about/detector/

Water and ice Cherenkov detectors

- KM3-net: ORCA 1-100 GeV, ARCA 100-10⁸ GeV, to 1 km³
- Baikal-GVD staged instrumentation since 2016, 1 km³ by 2025
- IceCube-Gen2 TBD

northern hemisphere

pathfinders in 2018, 2020

Fig. from Ackermann et al., JHEAp 36 (2022) 55

-2660

IceCube event signatures

track-like	cascade	double bang
(muons)	(NC, CC)	(taus)

Size of spheres: energy, colors: timing – early red, late blue

Kowalski for IceCube, J Phys: Conf. Series 888 (2017) 012007

Muon range helps detector effective volume

Dutta, MHR,...et al, PRD 63 (2001) 094020

Average range of muons in rock. Energy > 1 GeV, accounting for electromagnetic energy loss.

Water vs ice for optical Cherenkov detection

Spiering, https://bib-pubdb1.desy.de/record/452265/files/Spiering2020_Chapter_NeutrinoDetectorsUnderWaterAnd.pdf **Table 17.2** Absorption length and effective scattering length for different sites

Site	L_a (m)	L_{eff} (m)
Lake Baikal, 1 km depth	18–22	150–250
		(seasonal variations)
Ocean, > 1.5 km depth	40–70 (depends	200-300 (depends
	on site and season)	on site and season)
Polar ice, 1.5–2.0 km depth	~95 (average)	~ 20 (average)
Polar ice, 2.2–2.5 km depth	>100	30–40

Angular resolution, better for water than ice because of less scattering, but shorter attenuation length means more detectors per unit volume. Ice is better for VHE, UHE neutrinos because of the volume benefit.

Water: wet, bioluminesce. Ice: cold, infrastructure.cold vs wet, bioluminesce vs ice bubbles

NuSTEC Summer School 2024

Hallsie Reno, University of Iowa

Radio Cherenkov – Askaryan effect

See review: Barwick & Glaser, arXiv:2208.04971

- Askaryan effect (JETP 14, 1962), in which interactions in material produce a 20% electron excess (timevarying).
- Showers produce electron-positron pairs and also scatter with atomic electrons to produce a radiofrequency impulse.
- The attenuation length at radio frequencies is of order
 2 km in South Pole ice can increase detection
 volume at low cost! (Scattering & absorption of optical light is ~100 m, optical sensitive to air bubbles in ice.)
- May be able to distinguish electron neutrinos and antineutrinos.

Figure from T. Jaeger, PhD thesis 2010

Radio signals – sample trajectories

Figure from Barwick & Glaser, arXiv:2208.04971

- Cherenkov angle 56 deg in deep ice.
- Shower length is about 10 m.
- Transverse size about 10 cm.
- Sensitivity to 10⁸ GeV to a few times 10¹⁰ GeV neutrinos, about a degree resolution.
- Amplitude of electric field is proportional to the shower energy.

Radio Cherenkov Detectors

ARA at South Pole

Developing understanding of in-ice radio detection techniques.

Fig. from Ackermann et al., JHEAp 36 (2022) 55

ARIANNA@ the Ross Ice Shelf in Antarctica

Radio Cherenkov Detectors

- RNO-G in Greenland ice, 1 km attenuation length, detector station separation1.5 km.
- Phased array of radio antennas.
- Testbed for IceCube-Gen2 Radio.

IceCube-Gen2 Radio will cover 500 km2 of South Pole ice.

Also, Askaryan from Moon!

RNO-G Planned Layout

Fig. from Ackermann et al., JHEAp 36 (2022) 55

Optical Cherenkov in the atmosphere

Index of refraction of air $n_{air} \neq 1$, $\Delta n = 2.9 \times 10^{-4}$ at sea level

Energy thresholds in air: electron: 20.75 MeV muon: 4.4 GeV

Cherenkov angle: 1.4 deg

pion: 5.6 GeV kaon: 20.5 GeV

proton: 39 GeV

Index of refraction of air $n_{water} = 1.33$

Energy thresholds in water: electron: 0.75 MeV muon: 159 MeV

pion: 204 MeV

proton: 1.4 GeV

kaon: 746 MeV

Cherenkov angle: 41.4 deg

NuSTEC Summer School 2024

Neutrino interaction in atmosphere? interaction length

Atmospheric column depth:

Vertical: 1,033 cmwe Horizontal: 36,000 cmwe

Low probability of neutrino interactions in the atmosphere – optical Cherenkov techniques target Earth-skimming tau neutrinos.

49

Earth-skimming tau neutrinos for optical Cherenkov signals

Arguelles et al, PRD 106 (2022) 043008

- No signals of high energy tau neutrinos that go straight through the center of the Earth – attenuation of the flux.
- Earth-skimming neutrinos can yield signals from the tau decays (hadrons!).
- Earth-skimming tau neutrinos can yield signals in the atmosphere:

"tau neutrino regeneration" makes the Earth more transparent to tau neutrinos (but not transparent!)

Atmospheric optical Cherenkov detection

Fig. from Ackermann et al., JHEAp 36 (2022) 55 Trinity: on a mountain top

PBR

EUSO-SPB2

Atmospheric radio Cherenkov

refracted Askaryan, signal generated in ice

Spiering, https://bib-pubdb1.desy.de/record/452265/files/Spiering2020_Chapter_NeutrinoDetectorsUnderWaterAnd.pdf

Atmospheric radio Cherenkov detection

Beacon

GRAND

PUEO

Surface detectors

PUEO is successor to ANITA, balloon detectors

TAROGE, TAROGE-M

Fig. from Ackermann et al., JHEAp 36 (2022) 55

Particle detectors

TAMBO (future?)

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

Fig. from Ackermann et al., JHEAp 36 (2022) 55

Pierre Auger Observatory uses showers, fluorescence. AugerPrime adds radio.

NuSTEC Summer School 2024

				Fla	vor	Teo	chniq	ue	Neut	rino	Targe	et		G	eom	etry			
Experiments	Phase & Online Date	Energy Range	Site	Tau	All Flavor	Optical / UV	Radio	Showers	Atmosphere H ₂ 0	Earth's limb	repography	Lunar Regolith	Embedded	Planar Arrays	Vallev	Mountains	Satellite Balloon		Summary
IceCube	2010	TeV-EeV	South Pole		\checkmark	\checkmark			\checkmark				\checkmark						
KM3NeT	2021	TeV-PeV	Mediteranean		\checkmark				\checkmark				\checkmark						ontical Cherenkov
Baikal-GVD	2021	TeV-PeV	Lake Baikal		\checkmark				\checkmark				\checkmark						
P-ONE	2020	TeV-PeV	Pacific Ocean		\checkmark	\checkmark			\checkmark				\checkmark						a la se se alt a
IceCube-Gen:	2030+	TeV-EeV	South Pole		\checkmark	\checkmark	\checkmark		\checkmark				\checkmark						plus radio
ARIANNA	2014	>30 PeV	Moore's Bay		\checkmark		\checkmark		\checkmark				$ \checkmark$						•
ARA	2011	>30 PeV	South Pole		\checkmark		\checkmark		\checkmark				$ \checkmark$						
RNO-G	2021	>30 PeV	Greenland		\checkmark		\checkmark		\checkmark				$ \checkmark$						radia Charankay
RET-N	2024	PeV-EeV	Antarctica		\checkmark		\checkmark		\checkmark				\checkmark						
ANITA	2008,2014,2016	EeV	Antarctica	√	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark		
PUEO	2024	. EeV	Antarctica	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark							\checkmark		
GRAND	2020	EeV	China / Worldwide	\bigvee			\checkmark		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			
BEACON	2018	EeV	CA, USA/ Worldwide	\bigvee			\checkmark			\checkmark	\checkmark					\checkmark			radio Cherenkov
TAROGE-M	2018	EeV	Antarctica	\checkmark			\checkmark			\checkmark	\checkmark					\checkmark		_	
SKA	2029	>100 EeV	Australia		\checkmark		\checkmark					\checkmark		\checkmark				_	
Trinity	2022	PeV-EeV	Utah, USA	\bigvee						\checkmark						\checkmark			
POEMMA		>20 PeV	Satellite	\bigvee	\checkmark	\bigvee			\checkmark	\checkmark							\checkmark		ontical Charankov
EUSO-SPB	2022	EeV	New Zealand	\checkmark		\checkmark			-	\checkmark							\checkmark	_	орнсат спетенко
Pierre Auger	2008	EeV	Argentina		\checkmark			√	\checkmark	\checkmark	\checkmark			\checkmark					
AugerPrime	2022	EeV	Argentina		\checkmark		\checkmark	√	\checkmark	\checkmark	\checkmark			\checkmark					
Telescope Arra	y 2008	EeV	Utah, USA	\bigvee	\checkmark			√	\checkmark					\checkmark					narticles/showers
TAx4		EeV	Utah, USA		\checkmark			√											
TAMBO	2025-2026	PeV-EeV	Peru	\checkmark				\checkmark			\checkmark				\checkmark				

Operational	Date full operations began
Prototype	Date protoype operations began or begin
Planning	Projected full operations

Fig. Mammen Abraham et al., J.Phys.G 49 (2022) 110501

The Earth as a neutrino converter

FIG. 2. Proposed strategies to detect UHE neutrinos. The variety guarantees complementary physics opportunities.

Fig. from Esteban et al., PRD 106 (2022) 023021

Homework

To the first approximation, at small x, the gluon PDF scales as $xg(x, Q^2) \sim x^{-\lambda(Q^2)}$ and the sea quark PDFs are proportional to the gluon PDF. Make a back of the envelope argument that the neutrino-nucleon cross section scales with energy to a power: $\sigma_{\nu N} \sim E^{\alpha}$ and relate α to λ .

From slide 15, can you estimate λ and find an approximate α ?