# Impact of neutrino interaction uncertainties on oscillation measurements

Clarence Wret June 12 2024 NuSTEC school, CERN



# Impact of neutrino interaction uncertainties on oscillation measurements

Clarence Wret June 12 2024 NuSTEC school, CERN





#### Structure

- Recap of neutrino oscillations
  - What are we looking for and how?
  - How big are the effects?
- The role of the near detector
- Energy estimators
- What else can go wrong?

Neutrino flavour and mass eigenstates are separated

$$|\nu_i\rangle = \sum_{\alpha}^{n} U_{\alpha i} |\nu_{\alpha}\rangle$$
More state Revour state

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

١.

Mass state

Mixing matrix

α

• Neutrino flavour and mass eigenstates are separated

$$\begin{aligned} \nu_i \rangle &= \sum_{\alpha}^{n} U_{\alpha i} | \nu_{\alpha} \rangle \\ \text{Ass state} \quad u = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \end{aligned}$$

• Neutrinos propagate in mass eigenstates, but are born and detected in the flavour eigenstate via weak interaction

M

• Neutrino flavour and mass eigenstates are separated

$$\nu_{i}\rangle = \sum_{\alpha}^{n} U_{\alpha i} |\nu_{\alpha}\rangle \qquad U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
ass state

• Neutrinos propagate in mass eigenstates, but are born and detected in the flavour eigenstate via weak interaction



• Results in **oscillations** of the **detected flavour eigenstates** 

M

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$
  
$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2\sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin(\Delta m_{ij}^{2}\frac{L}{2E})$$

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re \left( U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})$$
  
$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} \qquad + (-)2 \sum_{i>j} Im \left( U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin(\Delta m_{ij}^{2} \frac{L}{2E})$$
  
Mixing angles

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$
  

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$
  
Mixing angles  
Mass<sup>2</sup> difference between eigenstate *i* and *j*

• Express probability to detect a neutrino with flavour  $\alpha$  and energy *E*, as flavour  $\beta$  after it's travelled distance *L* 

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i > j} Re \left( U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin^{2}(\Delta m_{ij}^{2} \frac{L}{4E})$$
  

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i > j} Im \left( U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right) \sin(\Delta m_{ij}^{2} \frac{L}{2E})$$
  
Mixing angles  
Mass<sup>2</sup> difference between eigenstate *i* and *j*

• Express probability to detect a neutrino with flavour  $\alpha$  and energy *E*, as flavour  $\beta$  after it's travelled distance *L* 



- Design of a neutrino oscillation experiment focusses on L/E
  - Determines sensitivity to mass squared splitting and mixing angles
  - Optimise L/E to match appearance/disappearance
  - Resolve neutrino energy adequately

 Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$
$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} \qquad + (-)2\sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right)\sin(\Delta m_{ij}^{2}\frac{L}{2E})$$



Nunokawa et al, Prog. Part. Nucl. Phys. 60, 338

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$
Dominant  
effect from  
sin<sup>2</sup>: to a  
unknown mass  
ordering:  

$$\Delta m_{32}^{2} > 0?$$
Normal hierarchy  

$$m^{2}$$

$$\Delta m_{atm}^{2}$$

$$\nu_{a}$$

**Clarence Wret** 

Nunokawa et al, Prog. Part. Nucl. Phys. 60, 338

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L



Nunokawa et al, Prog. Part. Nucl. Phys. 60, 338

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} + (-)2 \sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$
Measure differences in P( $\nu_{\mu} \rightarrow \nu_{e}$ ) and P(anti- $\nu_{\mu} \rightarrow$ anti- $\nu_{e}$ )  
 $\rightarrow$  left with single term

Express probability to detect a neutrino with flavour α and energy E, as flavour β after it's travelled distance L

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin^{2}(\Delta m_{ij}^{2}\frac{L}{4E})$$

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} \qquad + (-)2 \sum_{i>j} Im\left(U_{\alpha i}^{*}U_{\beta i}U_{\alpha j}U_{\beta j}^{*}\right) \sin(\Delta m_{ij}^{2}\frac{L}{2E})$$
Measure differences in P( $\nu_{\mu} \rightarrow \nu_{e}$ ) and P(anti- $\nu_{\mu} \rightarrow$ anti- $\nu_{e}$ )  
 $\rightarrow$  left with single term
$$\Delta_{ij} \equiv \Delta m_{ij}^{2}L/4E$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) - P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}) = -16J_{\alpha\beta} \sin \Delta_{12} \sin \Delta_{23} \sin \Delta_{31}$$
Sensitive to
$$CP \text{ violating phase}$$

$$J \equiv s_{12}c_{12}s_{23}c_{23}s_{13}c_{13}^{2} \sin \delta$$

Nunokawa et al, Prog. Part. Nucl. Phys. 60, 338

- But that was all in a **vacuum**!
- When **electron neutrinos** propagate through matter, they experience a different potential to the other flavours

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)}$$

$$\times \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta)$$

$$+ \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2},$$
(leading order calculation)
$$a \equiv G_{F} N_{e} / \sqrt{2}$$

- But that was all in a **vacuum**!
- When **electron neutrinos** propagate through matter, they experience a different potential to the other flavours

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)}$$

$$\times \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta)$$

$$+ \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2},$$
(leading order calculation)
$$a \equiv G_{F} N_{e} / \sqrt{2}$$

• For electron anti-neutrinos:  $a \rightarrow -a$  and  $\delta \rightarrow -\delta$ 

- But that was all in a **vacuum**!
- When **electron neutrinos** propagate through matter, they experience a different potential to the other flavours

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2}$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)}$$

$$\times \Delta_{31} \frac{\sin(aL)}{(aL)} \Delta_{21} \cos(\Delta_{31} + \delta)$$

$$+ \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(aL)}{(aL)^{2}} \Delta_{21}^{2},$$
(leading order calculation)
$$a \equiv G_{F} N_{e} / \sqrt{2}$$

- For electron anti-neutrinos:  $a \rightarrow -a$  and  $\delta \rightarrow -\delta$
- Matter effect produces a difference between  $P(\nu_{\mu} \rightarrow \nu_{e})$  and  $P(anti-\nu_{\mu} \rightarrow anti-\nu_{e}) \rightarrow \underline{Same \ as \ CP \ violation \ signature}$

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices
 <sub>s<sub>ij</sub> = sinθ<sub>ij</sub>

</sub>

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
Atomspheric or "2,3" sector Reactor, or "1,3" sector Solar, or "1,2" sector

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
Atomspheric or "2,3" sector Reactor, or "1,3" sector Solar, or "1,2" sector



Solar experiments (SNO, SK) long baseline reactor experiments (KamLAND, JUNO) L/E > 100km/MeV

From MIT

 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{bmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\underbrace{Atomspheric \text{ or}}_{\text{"2,3" sector}}_{\text{"2,3" sector}} \xrightarrow{\text{Reactor, or "1,3" sector}}_{\text{Reactor or "1,2" sector}} \xrightarrow{\text{Solar, or "1,2"}}_{\text{Solar, or "1,2" sector}}$$

Reactor experiments (Daya Bay, RENO, Double Chooz) <u>L/E ~ 1km/MeV</u>



 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
Atomspheric or   
"2,3" sector Reactor, or "1,3" sector Solar, or "1,2" sector

Long baseline experiments (K2K, T2K, NOvA, MINOS, DUNE, HK), atmospheric experiments (SK, IceCube) <u>L/E ~ 400-500km/GeV</u>



 The most general form of mixing matrix is seldom used; instead separate into three mixing matrices
 <sub>s<sub>ii</sub> = sinθ<sub>ii</sub>

</sub>

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
  
Atomspheric or  
"2,3" sector Reactor, or "1,3" sector Solar, or "1,2" sector

Long baseline experiments (K2K, T2K, NOvA, MINOS, DUNE, HK), atmospheric experiments (SK, IceCube)

#### L/E ~ 400-500km/Ge

The focus of these lectures

From DUNE

- Varying mass-squared splitting to see impact on muon neutrino oscillation probability
- Induces a shift in energy around the main oscillation dip



- Move from NuFit 5.2 to  $\sin^2\theta_{23} = 0.5 \rightarrow \text{decrease probabilities}$ for both flavours (increase  $\nu_{\mu} \rightarrow \nu_{\tau}$  probability)
- Overall decrease in normalisation, especially in dip region



- Changing  $\delta_{CP}$  cyclically from maximum to minimum effect, through the two CP-conserving points  $\delta_{CP}=0$ ,  $\pi$
- **Opposite effect** for electron neutrinos and anti-neutrinos



- Changing the mass ordering (NO, IO) and  $\delta_{\text{CP}}$  from 0 to - $\pi/2$
- Opposite effect for electron neutrinos and anti-neutrinos
- <u>Degeneracy</u>: NO → IO decreases electron neutrino; increases electron anti-neutrino. But, <u>shape of spectrum changes</u>
- $\delta_{CP}=0$ , NO very similar to  $\delta_{CP}=-\pi/2$ , IO for neutrinos



 The earlier features are often summarised in "bievent plots"



Eur. Phys. J. C 83, 782 (2023)

• Separate by mass ordering scenarios



**Clarence Wret** 

Eur. Phys. J. C 83, 782 (2023)

• Separate by CP violating phase scenarios



**Clarence Wret** 

Eur. Phys. J. C 83, 782 (2023)

• Separate by  $sin^2\theta_{23}$ 



**Clarence Wret** 

Eur. Phys. J. C 83, 782 (2023)

• But, these don't tell full story: **they ignore energy dependence** (simple counting experiment)



**Clarence Wret** 

35

- NOvA experiment has higher neutrino energy, and longer baseline compared to T2K
  - Stronger mass ordering sensitivity, weaker  $\delta_{CP}$  sensitivity



- Larger separation of  $\delta_{\text{CP}}$  and mass ordering effects
- (the different sensitivity to  $\delta_{CP}$  and MO makes joint T2K+NOvA fit very interesting, amongst other things)
#### Introduction

Oscillation parameters change the rate and shape of the appearing and disappearing neutrinos



### Introduction

• Oscillation parameters change the rate and shape of the appearing and disappearing neutrinos



- Relies on the model prediction in the absence of oscillations
  - Constrain this model  $\rightarrow$  constrain your oscillation parameters!

# Introduction

• Oscillation parameters change the rate and shape of the appearing and disappearing neutrinos



- Relies on the model prediction in the absence of oscillations
  - Constrain this model  $\rightarrow$  constrain your oscillation parameters!
- Finding cross-section effects which are degenerate with oscillation parameters is the nightmare scenario

# Pause for air

- Muon and electron (anti-)neutrinos respond differently to oscillation parameters
- Electron (anti-)neutrinos are the keys to unlocking  $\delta_{\text{CP}}$  and mass ordering measurements
  - Both cause an **asymmetry** between electron neutrino and antineutrino oscillations; **it's not just the CP violating phase!**
- <u>The energy spectrum</u> of the electron neutrinos is important when disentangling the degeneracies
  - This is not obvious in the bi-event plots, although they are illustrative
- The **degeneracy improves** for NOvA and DUNE, which have longer baselines (larger matter effects)
  - However, they are less sensitive to  $\delta_{CP}$
  - Less events at far detector because much further away

# Experiments and how oscillations are measured

- Accelerator neutrino oscillation experiments generally sit in the 0.5-5 GeV region
  - Optimised for L/E ratio, matter effects,  $\delta_{CP}$  sensitivity...
- The neutrino energy is a key factor in dictating which interactions matter
- Interaction mechanisms evolve differently in neutrino energy
- What matters for T2K, may not matter for NOvA, may not matter for DUNE
- Measurements from a cross-section experiment may not extrapolate well to oscillation experiment





**Clarence Wret** 



**Clarence Wret** 



#### Neutrino fluxes from accelerators $CC1\pi^+$ coherent





**Clarence Wret** 

Which interactions do T2K need to worry about?



Which interactions do T2K need to worry about?

Are those shared with other experiments?



**Clarence Wret** 







 $N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$ 







$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$$

| Sample      | Interaction   |                          |  |  |
|-------------|---------------|--------------------------|--|--|
| 1Rµ         | $\frac{v}{v}$ | 3.1(11.7)                |  |  |
|             | V             | 3.0 (10.8)               |  |  |
| 1R <i>e</i> | $\frac{v}{v}$ | 3.2 (12.6)<br>3.1 (11.1) |  |  |
| 1Re1de      | v             | 4.2 (12.1)               |  |  |

Complicated energydependent and selectiondependent **cross-sections** 

~10% uncertainties

54



$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \frac{\epsilon_{\rm FD}^{\alpha}(\vec{x})}{\epsilon_{\rm FD}^{\alpha}(\vec{x})}$$

| Sample |                |      |        |
|--------|----------------|------|--------|
| 1Rµ    | v              | 2.1  | (2.7)  |
|        | $\overline{v}$ | 1.9  | (2.3)  |
| 1D a   | v              | 3.1  | (3.2)  |
| IKe    | $\overline{v}$ | 3.9  | (4.2)  |
| 1Re1de | v              | 13.4 | (13.4) |

Sample

Particle acceptance may also depend on neutrino energy, and selection

Eur. Phys. J. C 83, 782 (2023)



$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$$

- Difficult to accurately constraint neutrino oscillations with many large uncertainties getting in the way
  - Many effects **may mimic the oscillation signal**, especially if you only look at a single neutrino flavour



• But what if you have a **near detector**?

$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$$
$$N_{\rm ND}^{\alpha}(\vec{x}) = \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm ND}^{\alpha}(\vec{x})$$



• But what if you have a **near detector**?

$$N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$$
$$N_{\rm ND}^{\alpha}(\vec{x}) = \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm ND}^{\alpha}(\vec{x})$$

- Events observed at the far detector have many **shared uncertainties** with the near detector
  - Constrain **flux and interaction model** using near detector data
- Characterise neutrinos with high-statistics near-detector samples before long baseline oscillations
- Mitigates many of the issues, e.g. size of cross sections, flux normalisation...

#### Aside: atmospheric near detector?



• For atmospheric neutrinos, there is no near detector

# Aside: atmospheric near detector?



- For atmospheric neutrinos, there is no near detector
- Largely addressed by **down-going neutrinos** 
  - Very small oscillation probability in region
  - Effectively acts as a near-detector constraint throughout a large neutrino energy range

Far detecto



But wh

#### ALL SYSTEMATICS CANCEL WITH A NEAR DETECTOR

YOU'VE THOUGHT ABOUT ACCEPTANCE MATCHING, ENERGY DEPENDENCE, INTRINSIC NUES, RIGHT?

- Charac baselin
- Events near de
  - Cor
- Mitiga
  Clarence Wret

ice Wret imgflip.com

bre long

tector(s)

with the

RGHTP sation...

# Role of external data

- You might not have a near detector; what do you do?
- Or in some cases, data from the **near detector might not suffice** 
  - e.g. you have an unmagnetised detector, but want to estimate NC1 $\pi^+$ contribution to the background in  $v_{\mu}$  disappearance
- **External data** is often used to estimate **the cross section**, and prevent a near-detector analysis from over-constraining the model



# Impact of systematics at the FD Neutrino cross-section uncertainties contribute ~3% to number of v<sub>e</sub> on NOvA M. Elkins, T. Nosek, Neutrino 2020 poster



- Dominant systematic amongst all systematics
- But measurement significantly limited by statistics currently

# Impact of systematics at the FD Neutrino cross-section uncertainties contribute ~3% to number of v<sub>e</sub> on NOvA



- Dominant systematic amongst all systematics
- But measurement significantly limited by statistics currently
- $v_{\mu}$  roughly same systematic and statistical uncertainty!
  - Dominated by detector calibrations, followed by cross sections (~2% level)

#### Impact of systematics at the FD

- On T2K, cross-section uncertainties contribute ~3% to  $\nu_{\mu}$  systematic uncertainty
  - In practice, slightly smaller because ND constrains convolution of flux \* cross-section parameters

| Sample |                | U UI      | Uncertainty source (%) |              | Flux Interaction (0%) | Total (%)  |
|--------|----------------|-----------|------------------------|--------------|-----------------------|------------|
|        |                | Flux      | Interaction            | FD + SI + PN | Flux Sinteraction (%) | 10tal (%)  |
| 1.D.u  | v              | 2.9 (5.0) | 3.1 (11.7)             | 2.1 (2.7)    | 2.2 (12.7)            | 3.0 (13.0) |
| ικμ    | $\overline{v}$ | 2.8 (4.7) | 3.0 (10.8)             | 1.9 (2.3)    | 3.4 (11.8)            | 4.0 (12.0) |

# Impact of systematics at the FD

- On T2K, cross-section uncertainties contribute ~3% to  $\nu_{\mu}$  systematic uncertainty
  - In practice, slightly smaller because ND constrains convolution of flux \* cross-section parameters

| Sample              |                | Uncertainty source (%) |             |              | Elux $\otimes$ Interaction ( $\mathcal{O}_{2}$ ) | Total $(0/2)$ |
|---------------------|----------------|------------------------|-------------|--------------|--------------------------------------------------|---------------|
|                     |                | Flux                   | Interaction | FD + SI + PN | Flux Sinteraction (%)                            | 10tal (70)    |
| 1D <i>1</i>         | v              | 2.9 (5.0)              | 3.1 (11.7)  | 2.1 (2.7)    | 2.2 (12.7)                                       | 3.0 (13.0)    |
| ΤΚμ                 | $\overline{v}$ | 2.8 (4.7)              | 3.0 (10.8)  | 1.9 (2.3)    | 3.4 (11.8)                                       | 4.0 (12.0)    |
| 1 <b>D</b> <i>a</i> | v              | 2.8 (4.8)              | 3.2 (12.6)  | 3.1 (3.2)    | 3.6 (13.5)                                       | 4.7 (13.8)    |
| INC                 | $\overline{v}$ | 2.9 (4.7)              | 3.1 (11.1)  | 3.9 (4.2)    | 4.3 (12.1)                                       | 5.9 (12.7)    |
| 1Re1de              | v              | 2.8 (4.9)              | 4.2 (12.1)  | 13.4 (13.4)  | 5.0 (13.1)                                       | 14.3 (18.7)   |

- $v_e$  samples see 3-5% contribution to the 5-14% total
  - Detector systematics on-par with cross-section systematics
  - Small statistics means current measurements not limited by systematics
- But... we'll come back to this later with "fake-data studies"

### Event counts at the FDs

| Sample                            | T2K |     |
|-----------------------------------|-----|-----|
| $N_{\mu}^{ m rec}$ FHC            | 318 | 211 |
| $N_{\mu}^{ m rec}$ RHC            | 137 | 105 |
| Ne <sup>rec</sup> FHC             | 108 | 82  |
| N <sub>e</sub> <sup>rec</sup> RHC | 16  | 33  |

- ν<sub>e</sub> measurements, especially in RHC, are heavily limited by statistics in current experiments
   ~10-25%
- $\nu_{\mu}$  measurements at the ~5% statistics level

# Event counts at the FDs

| Sample                            | T2K |     | <b>Hyper-Kamiokande</b> | DUNE |
|-----------------------------------|-----|-----|-------------------------|------|
| $N_{\mu}^{ m rec}$ FHC            | 318 | 211 | 10000                   | 7000 |
| $N_{\mu}^{ m rec}$ RHC            | 137 | 105 | 14000                   | 3500 |
| N <sub>e</sub> <sup>rec</sup> FHC | 108 | 82  | 3000                    | 1500 |
| N <sub>e</sub> <sup>rec</sup> RHC | 16  | 33  | 3000                    | 500  |

- HK and DUNE will have enough v<sub>e</sub> events to be limited by the ~3% (anti-)v<sub>e</sub> uncertainty
- $v_{\mu}$  measurements on the 1% scale
- Current uncertainties at the 3-5% level uncertainties\*

\*Exception of T2K's single-pion-below-threshold sample (10-15%)



\*Exception of T2K's single-pion-below-threshold sample (10-15%)

69

### Atmospheric neutrinos

 Atmospheric neutrinos have sensitivity to mass ordering via 3-10 GeV resonance

Opposite effect for neutrino and anti-neutrinos: need to separate

- Contribution from  $v_{\mu} \rightarrow v_{\tau}$ , where  $v_{\tau}$  enters multi-ring  $v_{e}$  sample



- $\delta_{CP}$  sensitivity from  $v_e$  below 1 GeV  $\rightarrow v_e/v_{\mu}$  important
- Neutrino flavour differences also limiting atmospheric results

# SBN

- For SBN programme and appearance searches, anything mimicking  $v_e$  appearance is important
  - e.g. NC1 $\chi$ , NC1 $\pi^0$  DIS, NC1 $\pi^0$  resonant, NC1 $\pi^0$  coherent
  - Many constrained by dedicated measurements and sidebands



- $v_e/v_\mu$  differences from nucleon and nuclear environment, especially considering <sup>40</sup>Ar
- Calorimetric energy reconstruction (see later)

128, 111801

# Where does the model dependence enter?
## Issues with the near detector The v<sub>μ</sub> flux at the FD has a minimum where the v<sub>μ</sub> flux at the ND has a maximum



## Issues with the near detector The v<sub>μ</sub> flux at the FD has a minimum where the v<sub>μ</sub> flux at the ND has a maximum



Similarly, the v<sub>e</sub> flux at the ND does not match the v<sub>e</sub> from v<sub>µ</sub> → v<sub>e</sub> oscillations

# Issues with the near detector The v<sub>μ</sub> flux at the FD has a minimum where the v<sub>μ</sub> flux at the ND has a maximum



- Similarly, the v<sub>e</sub> flux at the ND does not match the v<sub>e</sub> from v<sub>µ</sub> → v<sub>e</sub> oscillations
- Rely on model for extrapolating effects in neutrino energy, and  $v_e$  at ND can't necessarily predict  $v_e$  signal at FD

• Appearing  $v_e$  have different energy spectrum to  $v_e$  at near detector

- Appearing ν<sub>e</sub> have different energy spectrum to ν<sub>e</sub> at near detector
- ν<sub>e</sub> at near detector used to understand intrinsic ~
   ν<sub>e</sub> component in beam (irreducible background ν<sub>e</sub> appearance)



- Appearing v<sub>e</sub> have different energy spectrum to v<sub>e</sub> at near detector
- ν<sub>e</sub> at near detector used to understand intrinsic ~
   ν<sub>e</sub> component in beam (irreducible background ν<sub>e</sub> appearance)
- ν<sub>µ</sub> at near detector to constrain appearing ν<sub>e</sub> (~same flux): explicit dependence on muon-to-electron mapping



• On the nucleon-level, pretty simple?



• On the nucleon-level, pretty simple?





• Account for lighter lepton mass

80

• On the nucleon-level, pretty simple?



- Account for lighter lepton mass
- Maybe some **Coulomb repulsion**, shifts energy by ~MeV

• On the nucleon-level, pretty simple?



- Account for lighter lepton mass
- Maybe some Coulomb repulsion, shifts energy by ~MeV
- Radiative corrections, emitting collinear or virtual photon

Due to lepton mass, access different (q<sub>0</sub>, q<sub>3</sub>) for a fixed neutrino (or lepton) energy



83

Clarence Wr

- Due to lepton mass, access different  $(q_0, q_3)$  for a fixed neutrino (or lepton) energy
- Especially bad when the cross-section rapidly rising, and lepton mass is nonnegligible energy (T2K)



84

• Extension of study, focussing on nuclear models and kinematics accessible in experiments, found similar effects, ~3-4% level



85

#### Issues with the near detector

• For accurate measurements of the dip (e.g.  $sin^2\theta_{23}$ ), the modelling of the few events in the dip becomes important



### Issues with the near detector For accurate measurements of the dip (e.g. sin<sup>2</sup>θ<sub>23</sub>), the

modelling of the few events in the dip becomes important



### Acceptance mismatch Acceptance differences from differently sized detectors



#### Acceptance mismatch Acceptance differences from differently sized detectors

- Functionally identical does not mean identical acceptance



### Acceptance mismatch Acceptance differences from differently sized detectors

- Functionally identical does not mean identical acceptance



- Different target material and detector design means additional model dependence in  $CH \rightarrow H_2O$
- Different detector technologies and geometry may mean different particle acceptance

- Issue is present in T2K too, potentially even larger
  - Near detector very forward-oriented
  - High-angle tracks challenging to reconstruct



- Issue is present in T2K too, potentially even larger
  - Near detector very forward-oriented
  - High-angle tracks challenging to reconstruct



- SK is instead very symmetric and isotropic
  - Good acceptance forward, backward, upward and downward

- Issue is present in T2K too, potentially even larger
  - Near detector very forward-oriented
  - High-angle tracks challenging to reconstruct



- SK is instead very symmetric and isotropic
  - Good acceptance forward, backward, upward and downward, and a water target

- Issue is present in T2K too, potentially even larger
  - Near detector very forward-oriented
  - High-angle tracks challenging to reconstruct



- SK is instead very symmetric and isotropic
  - Good acceptance forward, backward, upward and downward



- Use forward-going events to model backward-going events
  - If this correlation is poorly modelled, issues!
- Similar argument goes for counting particles
  - If particles were emitted backwards in ND280, poorly reconstructed background
- DUNE's near and far detectors will have similar issues to NOvA
- Intermediate Water Cherenkov Detector (IWCD) addresses this on HK
  - Basically a small Super-K near detector

- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- Energy reconstruction method is function of selection and detector technology
- Need to understanding mapping between observed events and the not-observed neutrino energy



- <u>All estimators are biased</u>
  - Try to reduce the amount of bias
  - Understand the uncertainty on the bias

#### Calorimetric energy reconstruction

- NOvA, DUNE and SBN have sampling calorimeters and often events with multiple tracks
  - CC-inclusive selection
  - Energy estimator which sums up energy deposits



#### Calorimetric energy reconstruction

- NOvA, DUNE and SBN have sampling calorimeters and often events with multiple tracks
  - CC-inclusive selection
  - Energy estimator which sums up energy deposits



## Calorimetric energy reconstruction Simple simulation result agrees well with NOvA official





# Calorimetric energy reconstruction Simple simulation result agrees well with NOvA official figure: ~11% RMS



 Interaction modes bias differently, e.g. DIS has multiple neutrons and and pion that may undergo FSI

### Calorimetric energy reconstruction Use a different generator (NEUT), approximately the same





### Calorimetric energy reconstruction Use a different generator (NEUT), approximately the same





- Or... is it the same result?
  - Bias in the tail clearly different; source of uncertainty
Calorimetric energy reconstruction

- Generally more precise energy estimate than kinematic method (shown next)
- Susceptible to missing neutrons and other particles
- Final-state interactions directly bias the estimator
  - Absorption, charge exchange, nucleon knock-out, energy lost from rescattering
- Relies on **correct PID of every track**, otherwise risk bias by rest mass (e.g. mistake proton for pion)
- Will always have bias from initial state motion
  - Smaller impact at higher energies, e.g. NOvA and DUNE
- CC-inclusive selection means complex contributions from multiple interaction modes
  - Especially for DUNE and NOvA (many interaction modes)

**Paraphrasing from Stephen:** "When we look at external data, the lepton kinematics are often OK. But the hadrons are a mess!"

### 7 Boorption, charge exchange, nacieon knock out, chergy General rule of thumb

### Generators vs data: a horror story



Lepton kinematics (except maybe at low energy transfers)

Lepton-hadron correlations

No generator can come close to describing global data measuring lepton-hadron correlations

• All models are "wrong", but they are each wrong in different ways



0.6

δp<sub>T</sub> [(GeV/c)]

0.2

0.4







uBooNI

-SuSav2 (Total)

 $E_{rec}$  [GeV]

 $\delta p_{_{\rm T}}$  [GeV/c1

1.159 GeV

 $0.20 < q_2 [GeV] < 0.30$ 

0.50 < q3 [GeV] <

0.4

E<sub>avail</sub> [GeV]



**Stephen Dolan** 

Stephen Dolan 

NuSTEC Summer School, CERN, June 2024 TILLIULIUIT

- Energy reconstruction method is function of selection and detector technology
- T2K and HK are dominated by  $CC0\pi$  final state, and Cherenkov threshold for proton is >1 GeV in  $H_2O$



- Single-track events
- Kinematic reconstruction using only lepton information
- Assumes 4 legged CCQE interaction, and initial state nucleon at rest

$$\frac{2m_N E_l - m_l^2 + m_{N'}^2 - m_N^2}{2(m_N - E_l + p_l \cos \theta_{\nu,l})}$$













- When applied to T2K's CC1π sample, we get a large bias
  - This is for CC1π events with a pion below 200 MeV/c momentum
- How can we improve?



- When applied to T2K's  $30^{10^{-42}}$ CC1 $\pi$  sample, we get  $25^{10^{-42}}$ a large bias  $20^{10^{-42}}$ 
  - This is for CC1π events with a pion below 200 MeV/c momentum
- How can we improve?
   Clue:





- When applied to T2K's 30 $CC1\pi$  sample, we get a large bias
  - This is for CC1 $\pi$  events with a pion below 200 MeV/c momentum
- How can we improve? **Clue:**

 $\nu_l$ 

 $W^{\pm}$ 

CCQE



1

Replace 
$$m_{N'}$$
 (~0.938 GeV/c<sup>2</sup>)  
by  $m_{\Delta}$  (~1.232 GeV/c<sup>2</sup>)  
 $E_{\nu}^{\text{CCQE}} = \frac{2m_{N}E_{l} - m_{l}^{2} + m_{N'}^{2} - m_{N}^{2}}{2(m_{N} - E_{l} + p_{l}\cos\theta_{\nu,l})}$ 



- Important to get the CCQE, 2p2h and CC1π contributions correct
  - They bias the estimator differently: mistaking non-CCQE for CCQE imposes a bias
- Direct dependence on nuclear initial-state model
  - Relatively large contribution at  $E_v$ =0.6 GeV
- Only dependent on FSI in the absorption
  - Proton may lose energy to nucleus; does not matter in estimator
  - Secondary dependence on FSI through missing particles: think it's four-limbed interaction when it was not
- Small contribution from higher W resonances, SIS and DIS contributions (if T2K energies!)

- T2K builds prediction for data at the ND using model parameters
  - e.g. Nieves 2p2h normalisations, CCQE mean-field parameters, single pion production, finalstate interactions...



- T2K builds prediction for data at the ND using model parameters
  - e.g. Nieves 2p2h normalisations, CCQE mean-field parameters, single pion production, finalstate interactions...
- Get a set of parameter values fitted to data, and their correlations



| $0.0 < E_v < 0.4$ 1.00 0.86 0.67 0.54 0.49 -0.16 -0.31 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .43 -0.37 -0.21 -0.21 -0.27 -0.15<br>.36 -0.30 -0.17 -0.17 -0.23 -0.13 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .43 -0.37 -0.21 -0.21 -0.27 -0.15                                      |
| $0.4 < E_v < 0.5$ 0.86 1.00 0.87 0.72 0.49 -0.20 -0.38 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        |
| $0.5 < E_{v} < 0.6$ 0.67 0.87 1.00 0.89 0.49 -0.21 -0.45 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .50 -0.43 -0.24 -0.24 -0.32 -0.17 <b>0.6</b>                           |
| $0.6 < E_{v} < 0.7$ 0.54 0.72 0.89 1.00 0.71 -0.21 -0.54 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>.59 -0.49 -0.28 -0.28 -0.38 -0.19</u> -0.4                          |
| $0.7 < E_v < 1.0$ 0.49 0.49 0.49 0.71 1.00 -0.17 -0.52 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .55 -0.46 -0.26 -0.26 -0.37 -0.19                                      |
| M <sup>QE</sup> -0.16 -0.20 -0.21 -0.21 -0.17 1.00 0.10 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .02 -0.14 -0.16 -0.17 -0.54 -0.62                                      |
| $0.00 < Q^2 < 0.05$ -0.31 -0.38 -0.45 -0.54 -0.52 0.10 1.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61 0.55 0.27 0.29 0.39 0.19 - <b>0.0</b>                               |
| $0.05 < Q^2 < 0.10$ -0.36 -0.43 -0.50 -0.59 -0.55 -0.02 0.61 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00 0.37 0.45 0.25 0.52 0.31 - 0.2                                      |
| $0.10 < Q^2 < 0.15$ -0.30 -0.37 -0.43 -0.49 -0.46 -0.14 0.55 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37 <u>1.00</u> -0.13 0.55 0.44 0.38                                    |
| $0.15 < \mathbf{Q}^2 < 0.20  -0.17  -0.21  -0.24  -0.28  -0.26  -0.16  0.27  0.27  0.26  -0.16  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27  0.27 $ | 45 -0.13 1.00 -0.44 0.52 0.20                                          |
| $0.20 < Q^2 < 0.25  -0.17  -0.21  -0.24  -0.28  -0.26  -0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.17  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.29  0.$        | 25 0.55 -0.44 1.00 0.05 0.41 - 0.6                                     |
| $0.25 < Q^2 < 0.50  -0.23  -0.27  -0.32  -0.38  -0.37  -0.54  0.39  0.37  -0.54  0.39  0.54  0.39  0.54  0.39  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.54  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0.55  0$        | 52 0.44 0.52 0.05 1.00 0.46 <b>0.8</b>                                 |
| $0.50 < Q^2 < 1.00$ -0.13 -0.15 -0.17 -0.19 -0.19 -0.62 0.19 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31 0.38 0.20 0.41 0.46 1.00                                            |

- T2K builds prediction for data at the ND using model parameters
  - e.g. Nieves 2p2h normalisations, CCQE mean-field parameters, single pion production, finalstate interactions...
- Get a set of parameter values fitted to data, and their correlations
- Build the predictions at the FD against data, after the ND fit to data
  - Using the adjusted model



- T2K builds prediction for data at the ND using model parameters
  - e.g. Nieves 2p2h normalisations, CCQE mean-field parameters, single pion production, finalstate interactions...
- Get a set of parameter values fitted to data, and their correlations
- Build the predictions at the FD against data, after the ND fit to data
  - Using the adjusted model
- Fit the oscillation parameters!



# Using the near detector in analysis NOvA instead first tune 2p2h model to data in reconstructed hadronic energy



# Using the near detector in analysis NOvA instead first tune 2p2h model to data in reconstructed hadronic energy



- NOvA instead first tune 2p2h model to data in reconstructed hadronic energy
- Unfold reco neutrino energy to true neutrino energy via ND smearing matrix



- NOvA instead first tune 2p2h model to data in reconstructed hadronic energy
- Unfold reco neutrino energy to true neutrino energy via ND smearing matrix
- Apply "near-to-far" scaling



- NOvA instead first tune 2p2h model to data in reconstructed hadronic energy
- Unfold reco neutrino energy to true neutrino energy via ND smearing matrix
- Apply "near-to-far" scaling
- Fold back into reconstructed neutrino energy from true neutrino energy, via FD smearing matrix



### Fake-data studies

- Use an alternative model to make a prediction for near and far detectors
- Fit to the alternative model at the near detector
  - Set of parameters that best describe the alternative model



# **Concluding points**

- We're in for a **statistical treat** with HK and DUNE, and the final results from NOvA and T2K!
- In the next 10 years, model uncertainties on neutrino interaction cross sections need to be reduced from 3-5%, to 1-2% level
  - Electron neutrino interaction cross sections
  - Carbon to Oxygen scaling (T2K)
  - Neutrino energy reconstruction, <u>hadrons</u>
  - Cross section evolution in neutrino energy
- Rich interaction physics contribute across the range
  - Initial state model, nuclear processes (e.g. FSI, in-medium corrections), transition between resonances and DIS...
  - What needs to be prioritised varies greatly between experiments
- Ongoing and upcoming experimental and theoretical programmes aim at addressing these
  - So speak to your new colleagues, and join in on the fun!

# Backups

### Neutrino fluxes



### Neutrino fluxes



### NOvA

Jeremy Wolcott, NuInt17



### NOvA

#### M. Elkins, T. Nosek, Neutrino 2020 poster



### Atmospheric

### Hyper-K's Sensitivity to $\delta_{_{\text{CD}}}$ with Atmospheric neutrinos



### Systematic Effect on Hierarchy Sensitivity at Super-K



Reduction in  $\Delta \chi^2$  Rejction of Wrong Hierarchy Relative To No Systematics