
Workflow languages in
bioinformatics

C. Titus Brown

Lab for Data Intensive Biology

UC Davis School of Veterinary Medicine

ctbrown@ucdavis.edu; @ctitusbrown on Bluesky.

Slide will be available: google ‘osf.io my talks titus brown’

mailto:ctbrown@ucdavis.edu

Some intro warnings!

• This talk will (mostly) be about snakemake. Apologies – this was not
an intentional bait and switch, I didn’t remember the title when I was
preparing my outline & slides 😭

• I have lots of strong opinions, but they are loosely held. I am hoping
for discussion! Please feel free to post questions in chat, or raise your
hand! I can handle distractions!

• I have about 20-30 minutes of content :)

Introducing myself

• I came to biology through physics, sort of.

• Modeling, simulation, data analysis, genomics…

• Large scale data reuse…

• Really interested in helping people extend their reach and building
capacity on a field-wide scale.

• Very open-source/open-science/reproducibility focused

• I do a fair bit of software development and engineering
(github.com/ctb, github.com/dib-lab)

Why workflows??

Workflow systems may need no introduction with this crowd, but: over
the years I’ve realized workflows address a very personal set of

paranoid considerations on my part.

• Workflow systems let you know when a job fails.

• Workflow systems let you pick up execution immediately after a
previous failure.

• Workflow systems manage concurrency for you.

Snakemake is my workflow language of
choice. Why?
• There are 100s of workflow systems!1 How should we pick one??
IMO,
• Choosing a workflow system is a long term decision; you and your

collaborators will probably be stuck with your decision for a while!
• Pick one that has a community and whose community overlaps with your

domain.
• In bioinformatics, the choices are:

• Snakemake
• Nextflow
• CWL
• WDL

• My lab converged on snakemake through a nonlinear process.

1https://github.com/common-workflow-language/common-workflow-language/wiki/Existing-Workflow-systems

Digression: How different is bioinformatics
from (e.g.) physics?
Bioinformatics has:

• More many large files

• More big RAM jobs

• Much less numerical processing and ”pleasantly parallel” multithreaded
work.

• Lots of format interconversions and sorting etc

• In bioinformatics, it’s kind of like everyone has their own personal particle
accelerator for doing experiments and producing data. (Maybe?)

• tl;dr Lots of medium and small shell script jobs, with intermediate output
files.

Snakemake in 5 slides or less

Robust templating

Robust wildcarding

Good Python integration

Can apply operations to many files at once

Things about snakemake that I don’t love

Snakemake is amazing! But even crushes have limits ;)

• The checkpointing system for dynamically building new DAGs on the
basis of previous outputs is well implemented but confusing to use.

• The use of the Python parser results in error messages that are
confusing to newbies.

• More generally, snakemake is not super welcoming to newbies. (But,
see later slides)

• In the past, snakemake has stopped working well past ~50,000 jobs.

How does snakemake compare/contrast to
other workflow languages in bioinformatics?
• I’ve heard great things about nextflow! I just haven’t used it.

• Great toolchain ecosystem
• Wonderful pre-built / reusable workflows
• Fantastic community

• Common Workflow Language (CWL) and Workflow Definition Language (WDL) –
• Different approach: define standard language, support multiple runners
• Used by production platforms
• IMO, less about “let’s build a research workflow that we will tweak a few times, run a few

times, and then need to tweak again”
• More about “I need to run 100s of thousands of jobs in as efficient a manner as possible”
• Still, this is an increasingly mature ecosystem!

• Note, you can wrap snakemake workflows in CWL or WDL! (Not yet sure if this is
a good idea)

Back to community considerations…

• These days, you really want to be able to find answers on the Internet
• Stackoverflow, tool documentation, and ChatGPT,

• There’s nothing worse than searching your error message and finding your
own unanswered post from 2 years ago…

• This is reasonably synonymous with community… at least in biology.

• Snakemake and nextflow have really robust online communities.

• It is probably worth considering fixing or extending snakemake to
meet your needs, vs writing your own 😱

• Note: snakemake v8 will have a robust plugin architecture!

Why not write applications around workflow
software?

Workflows as applications

• It is relatively easy to embed snakemake in a Python command-line
application.

• You can provide good default behavior and hide much of snakemake
complexity!

• Upsides:
• Build command line applications that resume from failure well!

• Natively support full resource allocation, scheduling, cluster utilization, etc!

• A few downsides –
• Snakemake error messages come through regardless…

• Testing is rather challenging

Teaching snakemake to new bioinformaticians

• Many biologists/biomedical data scientists should be using workflow
systems, IMO.

• But, we don’t teach computing or data science to undergrad
biologists…

• …so graduate students arrive with little to no knowledge of
computing.

• There is also maybe something about biology undergrads avoiding
math and computing, although I think this is changing?

• We also do a terrible job, in general, of teaching computing basics…

Thought: it’s easy to learn to run one sample

…but no one ever teaches you to analyze 100 samples.

In bioinformatics, at least, you can always find the commands you need
to run for a particular analysis by googling.

But many labs today have dozens to 100s of samples.

And that is a COMPLETELY different kettle of fish!

Thought: workflow systems are a “cracked
mirror” of computing
Almost every feature in a workflow system exists because of a feature
that is lacking in standard computing…

• Notification of failed jobs

• Inability to precisely specify execution “flows” other than linear

• Inability to robustly resume where we left off

• Not-that-great foundational shell-scripting languages for pattern
matching etc.

• Hard delineations between single-chassis computers and clusters

So… maybe if we teach workflow systems well, that’s a good entry
point to computing?

My favorite way to teach snakemake

Start with just shell commands:

Evolve from there:

And then walk them through connecting shell commands with input/output

Rationale: you can always find the right set of shell commands to run ;)

A draft snakemake book

https://ngs-docs.github.io/2023-snakemake-book-draft/

…with good intro level materials, I think.

Evolving the snakemake book

• Executable examples => automated testing

• Continuous integration!

• Room for a robust community contribution model…

• Fills a unmet need in the snakemake community: it’s hard to get
started.

I’d really like to build something that can be used for upper level
undergrad teaching…

Resources mentioned here -

• Snakemake blog posts:
http://ivory.idyll.org/blog/tag/snakemake.html

• Snakemake book draft: https://ngs-docs.github.io/2023-snakemake-
book-draft/
• Please file issues/questions at https://github.com/ngs-docs/2023-snakemake-

book-draft

• Introduction to remote computing: https://ngs-docs.github.io/2021-
august-remote-computing/

http://ivory.idyll.org/blog/tag/snakemake.html
https://ngs-docs.github.io/2023-snakemake-book-draft/
https://github.com/ngs-docs/2023-snakemake-book-draft
https://ngs-docs.github.io/2021-august-remote-computing/

Thanks!

Always happy to chat –

ctbrown@ucdavis.edu

@ctitusbrown on bluesky

Or via github issues ;)

mailto:ctbrown@ucdavis.edu

