

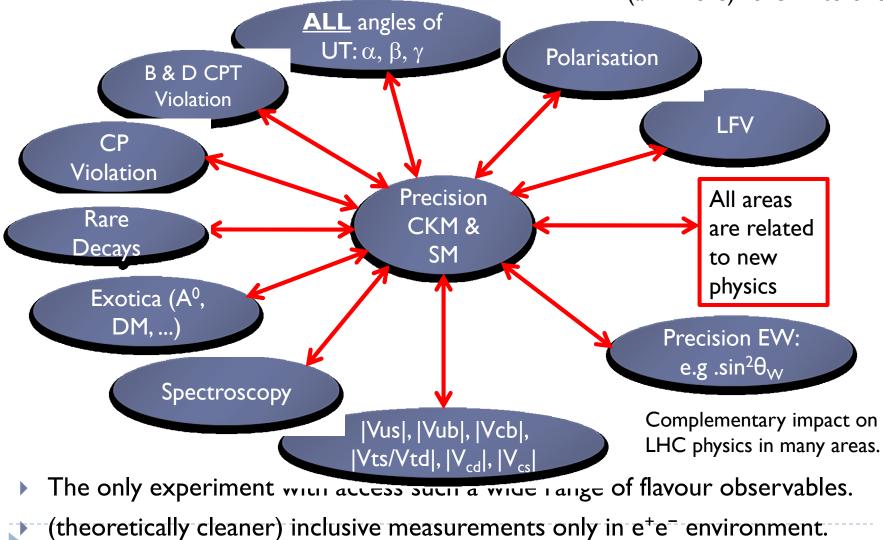
SuperB Physics & Detector overview

SuperB Miniworkshop, Oxford 18/19th May 2011

email: a.j.bevan@qmul.ac.uk

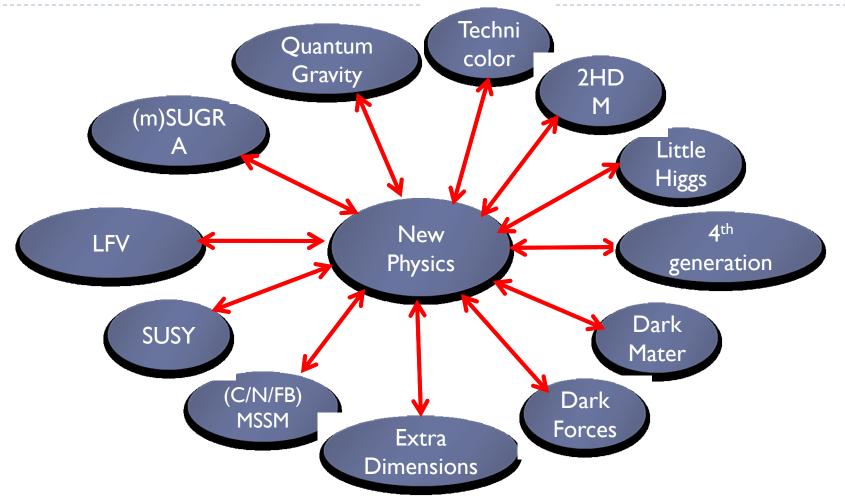
Overview

- Introduction
- Data samples available at SuperB
- Topics
 - Tphysics
 - B_{u,d,s} physics
 - D physics
 - Precision EW
 - Spectroscopy
- Interplay
 - Precision CKM
 - Golden modes
- A brief tour of the detector
- Summary


Introduction

- Current flavour physics landscape is defined by BaBar, Belle and the Tevatron.
 - We learned that CKM is correct at leading order.
 - Placed indirect constraints on NP that will last well into the LHC era. (e.g. H⁺ searches).
- SuperB will start taking data in 2016, and the first full run is expected in 2017.
 - LHCb will have re-defined some areas of flavour physics on that timescale [and take data through to 2017 shutdown].
 - LHC may (or may not) have found new particles.
 - In both scenarios SuperB can be used to constrain flavour dynamics at high energy.

Operate between Charm threshold and $\Upsilon(6S)$.


SuperB: Physics

Is a Super-CLEO/B/τ-charm (and more) rolled into one!

SuperB: Physics

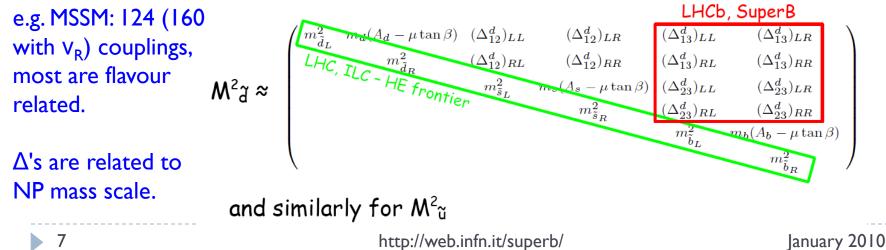
• Data from SuperB will be used to reconstruct the new physics Lagrangian.

Can learn something unique about NP irrespective of any NP discovery at LHC.

SuperB

- Aims to constrain flavour couplings of new physics at high energy:
 - Refine understanding of nature if new physics exists at high energy.
 - We need to test the anzatz that new physics might be flavour blind:
 - \Box Case I: trivial solution \rightarrow Reject more complicated models.
 - \Box Case 2: non-trivial solution \rightarrow Reject flavour blind models.
 - If the LHC doesn't find new physics: SuperB indirectly places constraints beyond the reach of the LHC and SLHC.

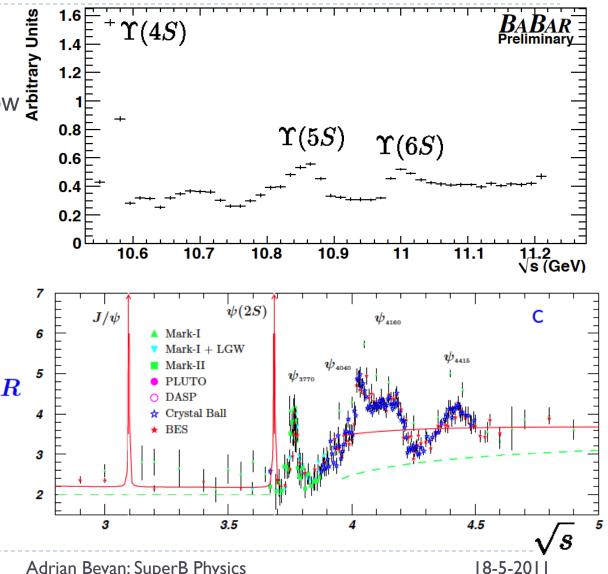
Quarks and neutrinos have non-trivial couplings. e,g, the CKM matrix in the Standard Model of particle physics. How far fetched is a trivial flavour blind new physics sector?


$$J^{\mu} = (\overline{u}, \overline{c}, \overline{t}) \frac{\gamma^{\mu} (1 - \gamma^5)}{2} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}s_{13} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

SuperB

Aims to constrain flavour couplings of new physics at high energy:

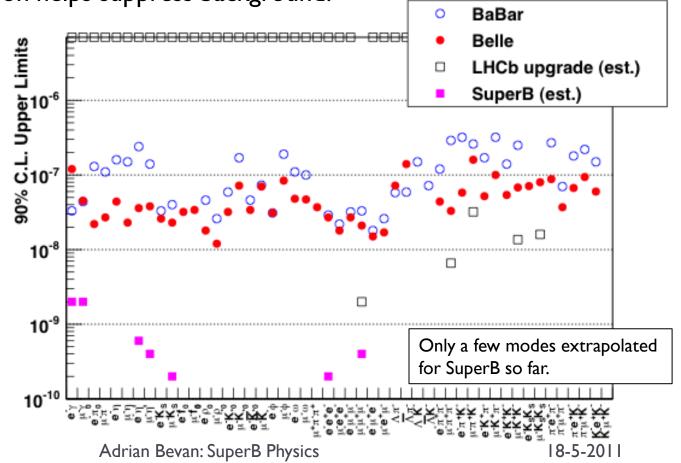
- Refine understanding of nature if new physics exists at high energy.
 - We need to test the anzatz that new physics might be flavour blind:
 - \Box Case I: trivial solution \rightarrow Reject more complicated models.
 - \Box Case 2: non-trivial solution \rightarrow Reject flavour blind models.
- If the LHC doesn't find new physics: SuperB indirectly places constraints beyond the reach of the LHC and SLHC.



Data sample

- Y(4S) region:
- (4S) region: 75ab-1 at the 4S Also run above / below F the 4S
 - ▶ ~75 х10⁹ В, D and т pairs

- ψ(3770) region:
 - 500fb⁻¹ at threshold
 - Also run at nearby resonances
 - $\sim 2 \times 10^9$ D pairs at threshold in a few months of running.



τLepton Flavor Violation (LFV)

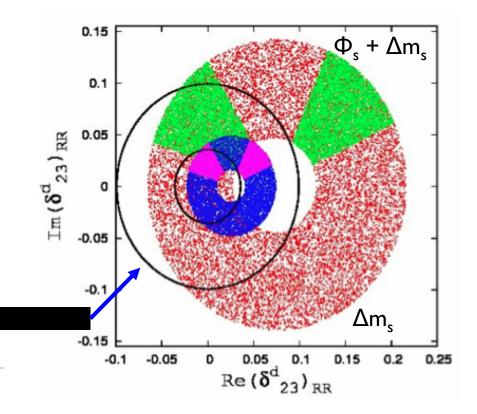
- ▶ Vmixing leads to a low level of charged LFV (B~10⁻⁵⁴).
 - > Enhancements to observable levels are possible with new physics.
- e⁻ beam polarisation helps suppress background.

Two orders of magnitude improvement at SuperB over current limits.

Hadron machines are not competitive with e⁺e⁻ machines for these measurements.

Specific example: $\tau \rightarrow \mu \gamma$

- Only accessible in e⁺e⁻ (golden modes: μγ, 3 lepton)
- Expect to retain background free searches with polarised electron beam.
 Model dependent NP constraint.


Golden channel for finding LFV.

Correlated with other flavour

observables: MEG, LHCb etc.

TABLE III: Expected 90% CL upper limits and 3σ evidence reach on LFV decays with 75 ab⁻¹ with a polarized electron beam.

Process	Expected	3σ evidence				
FIOCESS	$90\%{\rm CL}$ upper limit	reach				
$\mathcal{B}(\tau \to \mu \gamma)$	$2.4 imes10^{-9}$	$5.4 imes10^{-9}$				
$\mathcal{B}(\tau \rightarrow e \gamma)$	$3.0 imes10^{-9}$	$6.8 imes10^{-9}$				
$\mathcal{B}(\tau \to \ell \ell \ell)$	$2.3{-}8.2\times10^{-10}$	$1.2{-}4.0\times10^{-9}$				

Lepton Flavour Violation (τ decay)

- $\tau \rightarrow \mu \gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV,T2K etc.) and also to $\mu \rightarrow e\gamma$.
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in $\tau \rightarrow K_s \pi v$ at the level of ~10⁻⁵.
- Added Bonus:
 - Can also measure τ g-2 (polarization is crucial).
- $\sigma(g-2) \sim 2.4 \times 10^{-6}$ (statistically 11 dominated error).

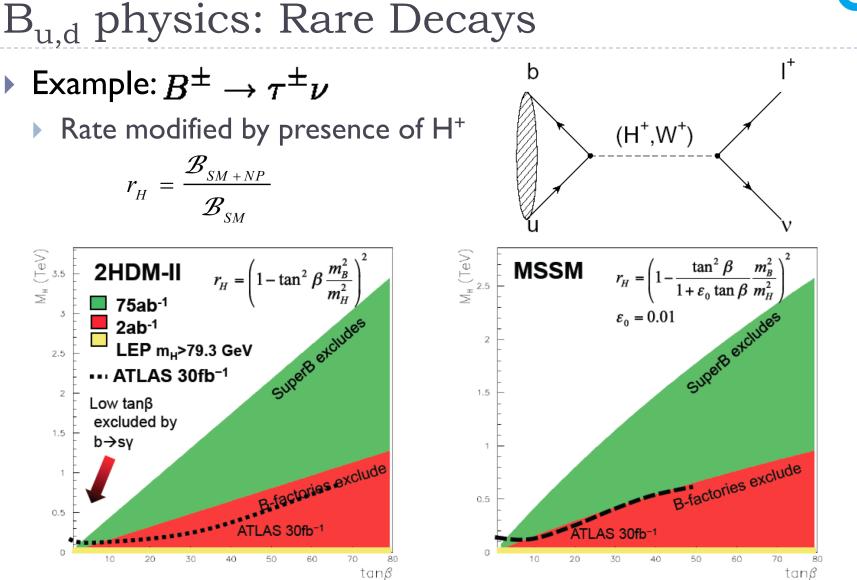
Herreo et al. 2006 10⁻⁸ SPS 1a $m_{N1} = 10^{10} \text{ GeV}, m_{N2} = 10^{11} \text{ GeV}$ 10⁻⁹ $m_{v1} = 10^{-5} eV$ $0 \leq |\theta_1| \leq \pi/4$ 10⁻¹⁰ $0 \leq |\theta_2| \leq \pi/4$ $\mathsf{3R}\;(\mu\to e\;\gamma)$ $\theta_3 = 0$ 10⁻¹¹ 10⁻¹² m_{N3} = 10¹⁴ GeV 10⁻¹³ $\theta_{13} =$ 10⁻¹⁴ m_{N3} = 10¹³ GeV Process Expected 90%CL 4σ Discovery upper limited Reach 2×10^{-9} 5×10^{-9} $\mathcal{B}(\tau \to \mu \gamma)$ $\mathcal{B}(\tau \to \mu \,\mu \,\mu) \,\, 2 \times 10^{-10}$ 8.8×10^{-10}

Use $\mu \gamma/3I$ to distinguish SUSY vs. LHT.



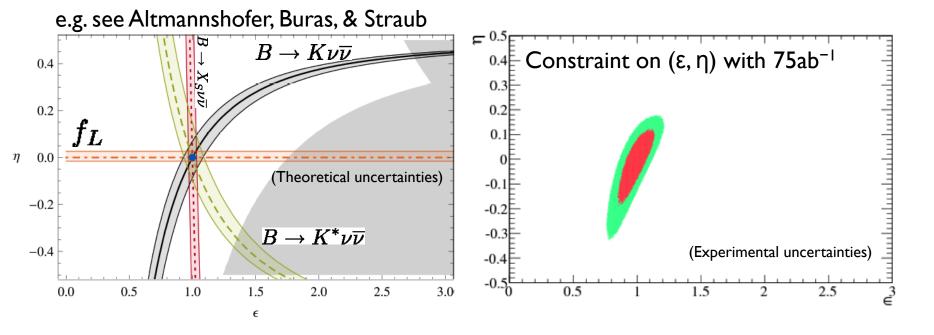
SUSY seasaw = CMSSM + $3v_R$ + v

Lepton Flavour Violation (7 decay)


- $\tau \rightarrow \mu \gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV,T2K etc.) and also to $\mu \rightarrow e \gamma$.
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in $\tau \rightarrow K_S \pi v$ at the level of ~10⁻⁵.
- Added Bonus:
 - Can also measure τ g-2 (polarization is crucial).
- $12 \sigma(g-2) \sim 2.4 \times 10^{-6}$ (statistically dominated error).

Use $\mu\,\gamma/\text{3I}$ to distinguish SUSY vs. LHT.

Adrian Bevan: SuperB Physics

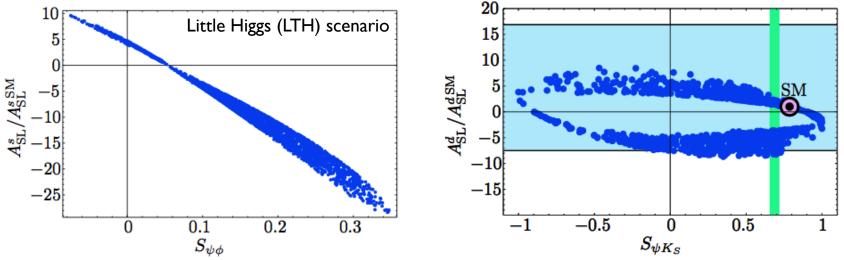

B_{u,d} physics: Rare Decays

• Example: $B \to K^{(*)} \nu \overline{\nu}$

- ▶ Need 75ab⁻¹ to observe this mode.
- ▶ With more than 75ab⁻¹ we could measure polarisation.

$$\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}}{|(C_L^{\nu})^{\text{SM}}|} , \qquad \eta = \frac{-\text{Re}\left(C_L^{\nu}C_R^{\nu*}\right)}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}$$

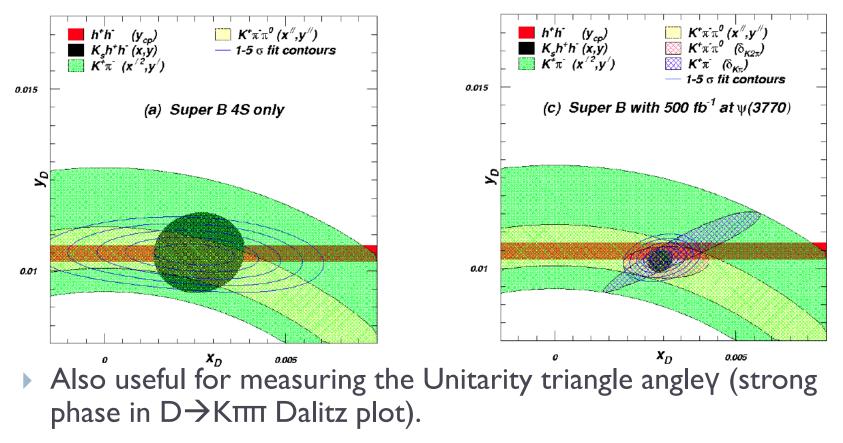
Sensitive to models with Z penguins and RH currents.


b→ sl+l-

- SuperB can measure inclusive and exclusive modes.
 - Crosscheck results to understand NP constraints using different approaches.
 - Important as opinions on theory uncertainties differ, and this is a complicated area (nothing is perfectly clean).
 - > Actively engaging the community to review this issue.
- SuperB can measure all lepton flavours
 - Equal amounts of μ and e final states can be measured.
 - Need both of these to measure all NP sensitive observables.
 - LHCb will accumulate slight more events in the $\mu\mu$ mode.
 - Expect superior statistics wrt LHCb for ee mode.
 - ► S/B~ 0.3, c.f. S/B~I.0 for LHCb.
 - Can also search for $K^{(*)}T^{+}T^{-}$ decay.
 - ... and constrain Majorana v's using like sign final states.
 - Also of interest for D_s decays to $K^{(*)}II$ final states near charm threshold.

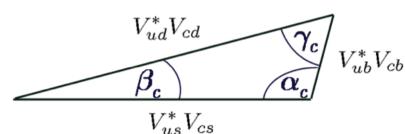
$B_{s} \text{ physics}$ $Can cleanly measure A_{SL}^{s} using 5S data$ $A_{SL}^{s} = \frac{\mathcal{B}(B_{s} \to \overline{B}_{s} \to X^{-}\ell^{+}\nu_{\ell}) - \mathcal{B}(\overline{B}_{s} \to B_{s} \to X^{-}\ell^{+}\nu_{\ell})}{\mathcal{B}(B_{s} \to \overline{B}_{s} \to X^{-}\ell^{+}\nu_{\ell}) + \mathcal{B}(\overline{B}_{s} \to B_{s} \to X^{-}\ell^{+}\nu_{\ell})} = \frac{1 - |q/p|^{4}}{1 - |q/p|^{4}}$

$\sigma(A_{SL}^s) \sim 0.004$ with a few ab^{-1}


SuperB can also study rare decays with many neutral particles, such as $B_s \rightarrow \gamma \gamma$, which can be enhanced by SUSY.

Charm

Collect data at threshold and at the 4S.


Benefit charm mixing and CPV measurements.

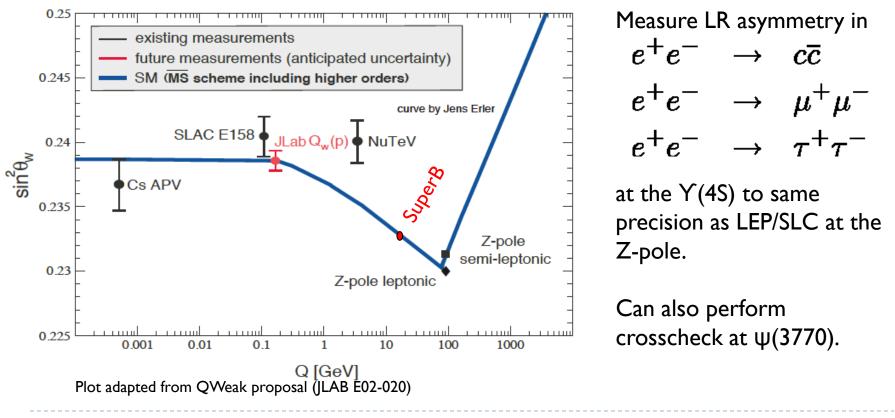
Work in progress: The quest for the final angle of the CKM matrix: β_c

• The charm cu triangle has one unique element: β_c

$$lpha_{c} = rg \left[-V_{ub}^{*} V_{cb} / V_{us}^{*} V_{cs} \right].$$

 $eta_{c} = rg \left[-V_{ud}^{*} V_{cd} / V_{us}^{*} V_{cs} \right],$

$$\gamma_c = \arg \left[-V_{ub}^* V_{cb} / V_{ud}^* V_{cd} \right],$$


- Can measure this angle using a $D \rightarrow \pi\pi$ Isospin analysis (ignoring long distance and exchange amplitudes).
 - This is only possible in an e^+e^- environment.
 - Data from the charm threshold region completes the set of 5 |V_{ij}| to measure: needs SuperB to perform an indirect test of the triangle.
- CPV can be measured in many places, but β_c will have smaller systematic errors using $\psi(3770)$ data, and Y(4S) data than at a hadronic machine.
 - There is essentially no dilution at $\psi(3770)$ [negligible systematic error]

Bevan, Inguglia, Meadows, to appear soon rB Physics 18-5-2011

Precision Electroweak

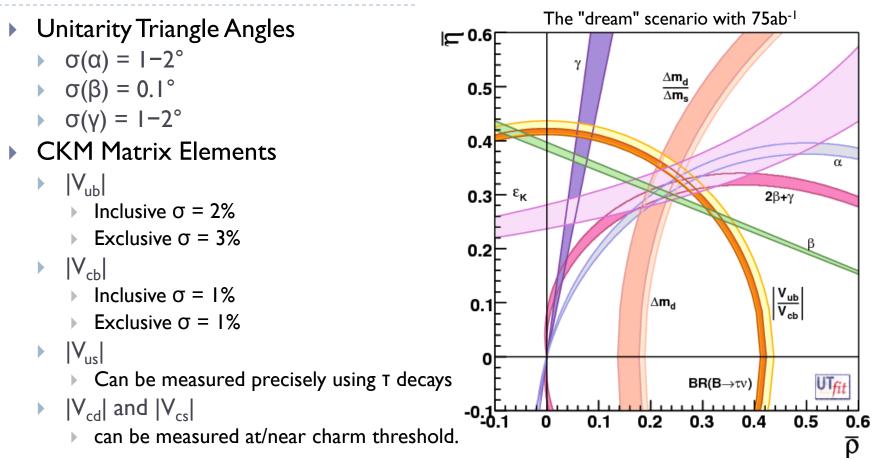
sin²θ_W can be measured with polarised e⁻ beam
 √s=Y(4S) is theoretically clean, c.f. b-fragmentation at Z pole

Spectroscopy

- Wide range of searches that can be made
 - SM searches, and understanding the properties particles, e.g. of X,Y,
 Z (establishing quantum numbers and resolving issues in the field).
 - Searching for light scalar particles (Higgs and Dark Matter candidates)
 - Di-lepton and 4-lepton final states can be used to test
 - Iepton universality (c.f. NA62, many possible measurements in this area)
 - models of Dark Forces (few GeV scalar field in the dark sector)
 - Remember that BaBar's most cited paper is the discovery of the D_{sl}

Interplay

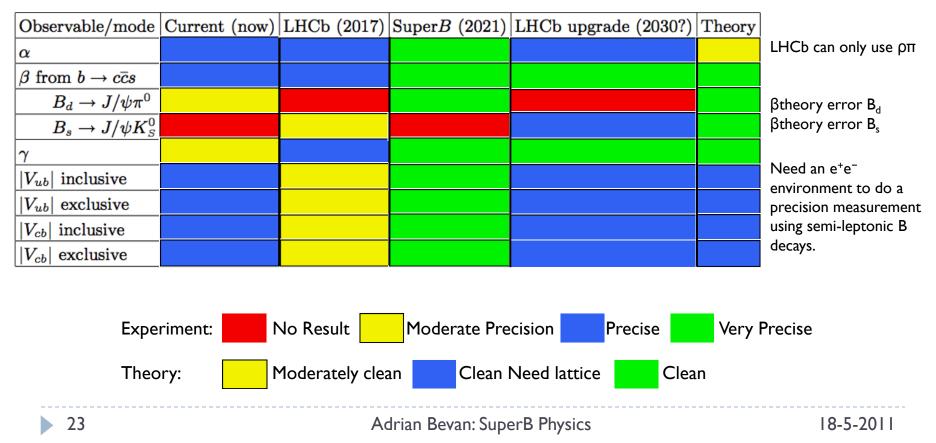
More information on the golden matrix can be found in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312.


Combine measurements to elucidate structure of new physics.

	Observable/mode	H^+	MFV	non-MFV	NP	Right-handed	LTH	SUSY				
		$\mathrm{high} \mathrm{tan} \beta$			Z penguins	currents		AC	RVV2	AKM	δLL	FBMSSM
1	$ au ightarrow \mu \gamma$							***	***	*	***	***
1	$ au ightarrow \ell \ell \ell$						***					
		$\star \star \star (CKM)$										
1	$B \to K^{(*)+} \nu \overline{\nu}$			*	***			*	*	*	*	*
1	$S \ { m in} \ B o K^0_{\scriptscriptstyle S} \pi^0 \gamma$					***						
1	S in other penguin modes			$\star \star \star (CKM)$		***		***	**	*	***	***
1	$A_{CP}(B ightarrow X_s \gamma)$			***		**		*	*	*	***	***
	$BR(B ightarrow X_s \gamma)$		***	*		*						
-	$BR(B o X_s \ell \ell)$			*	*	*						
1	$B \to K^{(*)} \ell \ell$ (FB Asym)							*	*	*	***	***
	$B_s ightarrow \mu \mu$							***	***	***	***	***
	eta_s from $B_s o J/\psi \phi$							***	***	***	*	*
1	a_{sl}						***					
1	Charm mixing							***	*	*	*	*
✓	CPV in Charm	**									***	

 \checkmark = SuperB can measure this

Precision CKM constraints



SuperB Measures the sides and angles of the Unitarity Triangle

Golden Measurements: CKM

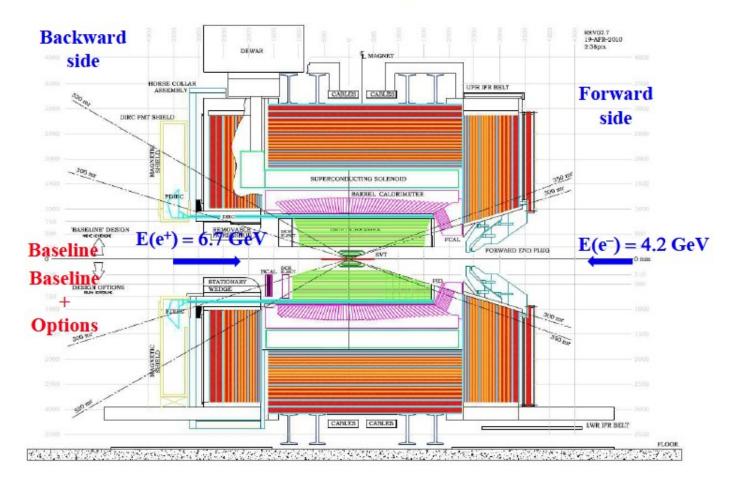
Comparison of relative benefits of SuperB (75ab⁻¹) vs. existing measurements and LHCb (5fb⁻¹) and the LHCb upgrade (50fb⁻¹).

Golden Measurements: CKM

Observable/mode	Current	LHCb	SuperB	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(2030)	now
α from $u\overline{u}d$	6.1°	5° a	1°	1°	ь	$1-2^{\circ}$
β from $c\bar{c}s$ (S)	0.9° (0.024)	0.5° (0.008)	0.1° (0.002)	0.5° (0.012)	0.2° (0.003)	clean
S from $B_d \rightarrow J/\psi \pi^0$	0.21		0.014	0.021 (est)		clean
S from $B_s \rightarrow J/\psi K_S^0$?			?	clean
γ from $B \to DK$	11°	$\sim 4^{\circ}$	1°	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	0.6 (est.)		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	1.2 (est.)		dominant
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		dominant
$ V_{ub} $ (exclusive) %	7.0		3.0%	5.0		dominant

Angles:

- Unitarity Triangle: SuperB covers all angles: α , β , γ (with redundant measurements).
- cu Triangle: SuperB covers β_c (γ_c needs "infinite" statistics to measure).
- Sides:
 - Only SuperB can measure all of $|V_{ub}|$, $|V_{cb}|$, $|V_{us}|$, $|V_{cs}|$, $|V_{cd}|$. Need $|V_{ud}|$ (already precisely known) to complete set of constraints to indirectly test bd and cu triangles.
- Only SuperB can provide direct and indirect constraints of bd and cu triangles.



Observable/mode	Current	BES III		SuperB	Belle II	LHCb upgrade	-	Č.
	now	(2016)	(2017)	(2021)	(2021)	(2030)	now	ો
		$20{\rm fb}^{-1}$	$5{\rm fb}^{-1}$	$75 {\rm ab}^{-1}$	$50 \mathrm{ab^{-1}}$	$50{\rm fb}^{-1}$		
¹		<u>τ</u> D	ecays					
$\tau \rightarrow \mu \gamma \; (\times 10^{-9})$	< 44			< 2.4	< 5.0			
$\tau \to e \gamma \; (\times 10^{-9})$	< 33			< 3.0	< 3.7 (est)			
$\tau \rightarrow \ell \ell \ell \; (\times 10^{-10})$	< 150 - 270		< 244 ^a	< 2.3 - 8.2	< 10	$< 24^{\ b}$		
		$B_{u,d}$	Decays					
$BR(B \rightarrow \tau \nu) (\times 10^{-4})$	0.34			4%	0.05			
$BR(B \rightarrow \mu\nu) (\times 10^{-6})$	< 1.0			5%	$>5\sigma$ observation			
$BR(B \rightarrow K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80			1.1	2.0		~ 1	
$BRB \rightarrow K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160			0.7	1.6		≤ 0.7	
$BR(B \rightarrow X_s \gamma) (\times 10^{-4})$	0.26			0.11	0.13	0.23		
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})$	0.77			0.18	0.22			
$B \to K^* \mu^+ \mu^-$ (events)	x		14,000	10,000	6,700	140,000		
$B \to K^* e^+ e^-$ (events)	x		$1,400^{c}$	10,000	6,700	$14,000^{d}$		
$S \text{ in } B \rightarrow K^0_S \pi^0 \gamma$	0.20			0.03	0.04 (est.)			
$S \text{ in } B \rightarrow \eta' K^0$	0.07			0.01	0.02		± 0.015	
$S \text{ in } B \rightarrow \phi K^0$	0.17		0.15	0.02	0.03	0.03	± 0.02	
		B_s^0 I	Decays					
$BR(B_s \rightarrow \mu \mu)^e (\times 10^{-9})$	< 51		±1			± 0.3	±0.4	
$2\beta_s$ from $B_s^0 \to J/\psi\phi$	0.35		0.019			0.006	0.003	
$BR(B_s^0 \to \gamma \gamma) \ (\times 10^{-6})$	< 8.7			0.3 ^f			0.4 - 1.0	
A^s_{SL}				0.004				
		DD	ecays					
x	0.21%			0.02%	0.09%			
y	0.19%			0.01%	0.05%			
y _{CP}	0.22%		0.05%	0.04%	0.05% (est.)	0.02%		
	0	ther proc	esses De	cays		· I		
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$		F-30		0.0002	0.0005		clean	2011

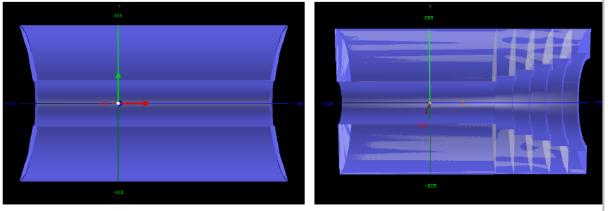
The detector

Detector layout

SVT

- Contact: Giuliana Rizzo (Pisa)
- I layer of pixels, 5 layers of double sided strips
 - See Fergus' talk this afternoon on pixels
 - AB's talk on mechanics and strips

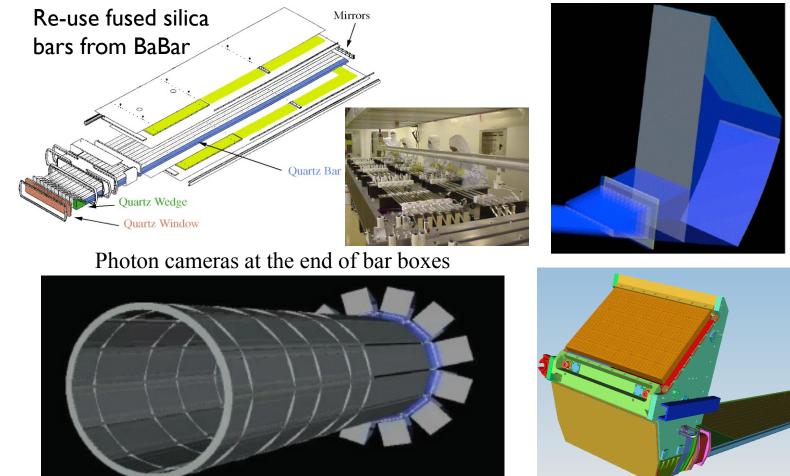
for more details.


Countries involved: UK (QM, RAL), Italy (Bologna, Milano, Pavia, Pisa, Roma III, Torino, Trento, Trieste)

- UK interest: sensors and mechanics
- Plenty of open areas for interested newcomers

DCH

- Contacts: Mike Roney (UVic), Giuseppe Finocchiaro (LNF)
- Canada, Italy and France working on this system


(a) Spherical endplates design.

(b) Stepped endplates design.

- The DCH outer radius is constrained to 809mm by the DIRC quartz bars
- the nominal BABAR DCH inner radius of 236mm currently used until final focus cooling system constraints finalized
- chamber length of 2764mm at the outer radius: depends on forward PID and backward EMC
- > 28 sense wire prototype under construction

Next generation iteration of the BaBar DIRC system

Geant4 simulation

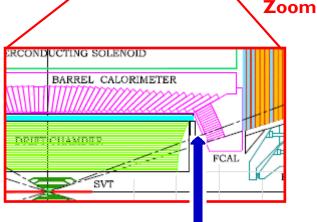
Current mechanical design

Adrian Bevan: SuperB Physics

18-5-2011

Forward

side


Forward PID (option)

- Goal: improve PID in the SuperB forward region
 - In BaBar: only dE/dx information from drift chamber
- Challenges
 - space limitation, low X_0 , cheap, efficient
 - Gain limited by the small solid angle [θ_{polar}~15÷25 degrees]
- Different technologies being studied
 - Time-Of-flight: ~100ps timing resolution needed
 - RICH: great performances but thick and expensive
- Decision by the TDR time
 - Internal task force reviewing proposals

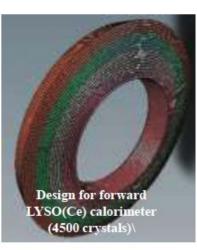
SuperB

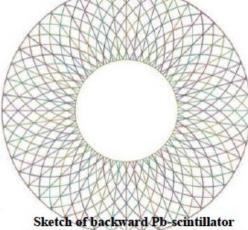
UPR IFR BELT

Forward PID location

DEWAR

DIRC PMT SHIELD


ASELINE' DESIG



Electromagnetic Calorimeter

- Contacts: Frank Porter (Caltech), Claudia Cecchi (Perugia)
 The SuperB ElectroMagnetic Calorimeter (EMC)
 - · System to measure electrons and photons, assist in particle identification
 - Three components
 - Barrel EMC: CsI(Tl) crystals with PiN diode readout (Re-use BaBar barrel crystals)
 - Forward EMC: LYSO(Ce) crystals with APD readout
 - Backward EMC: Pb scintillator with WLS fiber to SiPM/MPPC readout [option]
 - Groups: Bergen, Caltech, Perugia, Rome
 → New groups welcome to join!

calorimeter, showing both radial and logarithmic spiral strips (24 Pb-scint layers, 48 strips/layer, total 1152 scintillator strips)

Adrian Bevan: SuperB Physics

18-5-2011

IFR

Contact: Roberto Calabrese (Ferrara)

The Beam test of the Prototype

- A detector prototype has been built to test the technology on large scale and to validate simulation results
- Iron: 60x60x92
 cm³, 3cm gaps for
 the active layers

- Up to 9 active layers readout together (about 230 independent electronic channels)
- Active modules housed in light tightened boxes (aka Pizza Box)
 - 4 Time Readout modules
 - 4 Binary Readout modules
 - 4 special modules to study different fibers or <u>SiPM</u> geometry
- Tested in Dec. 2010 at the <u>Fermilab</u> Test Beam Facility with <u>muon/pion</u> (4-8GeV)

Physics programme in a nutshell

- Versatile flavour physics experiment
 - Probe new physics observables in wide range of decays.
 - Pattern of deviation from Standard Model can be used to identify structure of new physics.
 - Clean experimental environment means clean signals in many modes.
 - ▶ Polarised e⁻ beam benefit for T LFV searches.
 - Best capability for precision CKM constraints of any existing/proposed experiment.
 - Measure angles and sides of the Unitarity triangle
 - Measure other CKM matrix elements at threshold and using T data.
- Working on a TDR for 2012, followed by a physics book some time later.
 - Plenty of open areas for newcomers to work on

Detector programme in a nutshell

- All subsystems have a strong core of people working on them
- However all have open areas of interest to newcomers to the effort.
 - Very little is frozen (e.g. inner/outer radii of DCH is fixed, but flexibility in technology choice and design)
 - Focussed active groups can still make a strong impact in a given subsystem
- Re-use of EMC barrel, DIRC fused silica, Solenoid and fluxreturn iron save a lot from the budget.
 - The SuperB detector is extremely cheap: 50M€ split 50/50 between INFN and overseas contributors such as ourselves.
- Working toward a TDR for 2012