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3rd generation storage ring light sources

1992 ESRF, France (EU)
ALS, US
1993 TLS, Taiwan
1994 ELETTRA, ltaly
PLS, Korea
MAX Il, Sweden
1996 APS, US
LNLS, Brazil
1997 Spring-8, Japan
1998 BESSY Il, Germany
2000 ANKA, Germany
SLS, Switzerland
2004 SPEAR3, US
CLS, Canada
2006: SOLEIL, France
DIAMOND, UK
ASP, Australia
MAX Ill, Sweden 700 MeV
Indus-ll, India 2.5 GeV
2008 SSRF, China 3.4 GeV
2009 PETRA-II, D 6 GeV

2011 ALBA, E 3 GeV




3rd generation storage ring light sources

under construction or planned

> 2011 NSLS-II, US
SESAME, Jordan
MAX-IV, Sweden

TPS, Taiwan
CANDLE, Armenia
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Brilliance and low emittance

The brilliance of the photon beam is determined (mostly) by the electron beam
emittance that defines the source size and divergence
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Low emittance lattices

Lattice design has to provide low emittance and adequate space in straight
sections to accommodate long Insertion Devices

2

Ey = Y <H > dipole H(s) = yD* + 2aDD'+ D'

Jxp

Minimise 3 and D and be close to a waist in the dipole

Zero dispersion in the straight section was used especially in early machines

avoid increasing the beam size due to energy spread

hide energy fluctuation to the users

allow straight section with zero dispersion to place RF and injection
decouple chromatic and harmonic sextupoles

DBA and TBA lattices provide low emittance with large ratio between

Lengthof straightsections
Circumferece

Flexibility for optic control for apertures (injection and lifetime)



DBA and TBA
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Breaking the achromatic condition

Leaking dispersion in straight sections
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reduces the emittance | APS
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Low emittance lattices

New designs envisaged to achieve
sub-nm emittance involve

Damping Wigglers
Petra-lll: 1 nm
NSLS-II: 0.5 nm

MBA
MAX-IV (7-BA): 0.5 nm
Spring-8 (10-BA):160 pm

10-DBA abandoned because no DA,
reverted to a QBA
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Diamond aerial view

Oxford
15 miles

== Frascati
M 1200 miles

Diamond is a third generation light source open for users since January 2007
100 MeV LINAC; 3 GeV Booster; 3 GeV storage ring

2.7 nm emittance — 300 mA — 18 beamlines in operation (10 in-vacuum small gap IDs)



Diamond storage ring main parameters
non-zero dispersion lattice

optics functions
T T

Al i

A
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48 Dipoles; 240 Quadrupoles; 168 Sextupoles
(+ H and V orbit correctors + 96 Skew Quadrupoles)
3 SC RF cavities; 168 BPMs

Quads + Sexts have independent power supplies

Energy
Circumference
No. cells
Symmetry
Straight sections
Insertion devices
Beam current
Emittance (h, v)
Lifetime

Min. ID gap

Beam size (h, v)

3 GeV
561.6 m
24
6
6 x 8m, 18 x 5m
4 x8m, 18 x 5m
300 mA (500 mA)
2.7,0.03 nm rad
>10 h
7 mm (5 mm)

123, 6.4 um

Beam divergence (h, v) 24, 4.2 yrad

(at centre of 5 m ID)

Beam size (h, v)

178, 12.6 um

Beam divergence (h, v) 16, 2.2 urad

(at centre of 8 m ID)



Linear optics modelling with LOCO

Linear Optics from Closed Orbit response matrix — J. Safranek et al.

Machine beta functions compared to model (08/11/2006)
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B - beating reduced to 0.4% rms

Quadrupole variation reduced to 2%
Results compatible with mag. meas. and calibrations
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LOCO allowed remarkable progress with the correct implementation of the

linear optics
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Linear coupling correction with LOCO (ll)

Skew quadrupoles can be simultaneously zero the off diagonal blocks of the
measured response matrix and the vertical disperison

X (aaaBPMs agq,EBPMs yoor) = Z(Ri?easured - RglOdel(a’gq’aBPm ’EBPMS ’"'))Z
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BPMs coupling

LOCO fits also the BPM gain and coupling

BPM coupling includes mechanical rotation and electronics cross talk

BPFM Coupling
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These data are well reproducible over months

diamond
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Residual vertical dispersion

Without skew quadrupoles off rrm.s. Dy = 14 mm
After LOCO correction rrm.s. Dy = 700 ym
o (2.2 mm if BPM coupling is not corrected)
ol ster S secouning |

Yertical dispersion (m)
I=
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Measured emittances

Coupling without skew quadrupoles off K = 0.9%

(at the pinhole location; numerical simulation gave an
average emittance coupling 1.5% % 1.0 %)

Emittance [2.78 - 2.74] (2.75) nm
Energy spread [1.1e-3 - 1.0-e3] (1.0e-3)

After coupling correction with LOCO (2*3 iterations)
1st correction K = 0.15%

2nd correction K = 0.08%

V beam size at source point 6 um

Emittance coupling 0.08% — V emittance 2.2 pm

Variation of less than 20% over different measurements *



Comparison machine/model and
Lowest vertical emittance

Model Measured | B-beating (rms) | Coupling* | Vertical
emittance emittance (g, &) emittance

ALS 6.7 nm 6.7 nm 0.5 % 0.1% 4-7 pm
APS 2.5 nm 2.5 nm 1% 0.8% 20 pm
ASP 10 nm 10 nm 1% 0.01% 1-2 pm
CLS 18 nm 17-19 nm 4.2% 0.2% 36 pm
Diamond 2.74 nm 2.7-2.8 nm 0.4 % 0.08% 2.2 pm
ESRF 4 nm 4 nm 1% 0.1% -
SLS 5.6 nm 5.4-7 nm 4.5% H; 1.3% V 0.05% 2.0 pm
SOLEIL 3.73 nm 3.70-3.75 nm 0.3 % 0.1% 4 pm
SPEAR3 9.8 nm 9.8 nm <1% 0.05% 5 pm
SPring8 3.4 nm 3.2-3.6 nm 1.9% H; 1.5% V 0.2% 6.4 pm
SSRF 3.9 nm 3.8-4.0 nm <1% 0.13% 5 pm

* best achieved



Non-linear optics optimisation and control
with low emittance lattices

Low emittance — Large Nat. Chromaticity with Strong quads and Small Dispersion
— Strong SX — Small Apertures (Dynamic and Momentum apertures)

Usually the phase advance per cell is such that low resonance driving terms are
automatically compensated (to first order)

Numerical optimisation is however unavoidable

Lifetime vs RF Voltage

—ald

need 6D tracking (watch out alpha_2)
use DA and FM plots

_—— —*+elegant GA [

use MOGA ! AT
MOGA in elegant to optimise 8 sextupole ) B /
families at Diamond improved the Touschek | ’/
lifetime by 20 % e

2.4
VRF (M)
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Frequency map and detuning with momentum
comparison machine vs model (l)

detuning with momentum

model and measured
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Sextupole strengths variation less than 3%

The most complete description of the nonlinear model is mandatory !
Measured multipolar errors to dipoles, quadrupoles and sextupoles (up to b10/a9)
Correct magnetic lengths of magnetic elements

Fringe fields to dipoles and quadrupoles

Substantial progress after correcting the frequency response of the Libera BPMs



Vertical Amplitude (mm)

Frequency map and detuning with momentum
comparison machine vs model (ll)
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The fit procedure based on the reconstruction of the measured FM and detunng with
momentum describes well the dynamic aperture, the resonances excited and the
dependence of the synchrotron tune vs RF frequency

R. Bartolini et al. Phys. Rev. ST Accel. Beams 14, 054003
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Frequency Analysis of betatron motion

x10"

Example: Spectral Lines for tracking data for the Diamond lattice
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X motion FFT
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Spectral Lines detected with
SUSSIX (NAFF algorithm)

e.g. in the horizontal plane:

1.10 1073
1.04 106
2.21 10”7
1.31 10”7
9.90 108
2.08 108

horizontal tune
Q,+2Q,

4 Q,
2Q,+2Q,

3 Q,
2Q,+4Q,

Each spectral line can be associated to a resonance driving term

J. Bengtsson (1988): CERN 88-04, (1988).
R. Bartolini, F. Schmidt (1998), Part. Acc., 59, 93, (1998).

R. Tomas, PhD Thesis (2003)



Nonlinear dynamics from betatron oscillations

All BPMs have turn-by-turn capabilities

* excite the beam diagonally

cn
=
T
1

 measure tbt data at all BPMs
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* colour plots of the FFT
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See also R. Bartolini et al. Phys. Rev. ST Accel. Beams 11, 104002 (2008)



ongoing work

Frequency Maps and amplitudes and phases of the spectral line of the betatron
motion can be used to compare and correct the real accelerator with the model

p

Closed Orbit Response Matrix LOCO\
from model ”
fitting quadrupoles, Linear lattice
Closed Orbit Response Matrix etc correction/calibration

measured

A

)

A
/

Spectral lines + FMA

from model

Spectral Lines + FMA

measured

2

A\ 4

A

Nonlinear calibration and correction\

fitting sextupoles
and higher order
multipoles

Nonlinear lattice
correction/calibration

/

Combining the complementary information from FM and spectral line should allow the
calibration of the nonlinear model and a full control of the nonlinear resonances



Further techniques

A light for Science

Vertical emittance reduction via
coupling resonance driving terms
correction: theory and experimental
results at the ESRF

J. Chavanne, F. Ewald, L. Farvacque,
A. Franchi, B. Nash, T. Perron, K. Scheidt

A. Franchi et al., PRSTAB 14, 034002 (2011)

XVllith European Synchrotron Radiation Light Source Workshop 2010
ELETTRA, Trieste, 25-26 November 2010

turopean Synchrotron Radiation Facility
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ESRF coupling correction with spectral lines ()

A light for Science

Application to the ESRF storage ring

First RDT correction: January 16t 2010
All skew correctors OFF: Ey +3&, = 237 + 122 pm
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Courtesy A. Franchi

turopean Synchrotron Radiation Facility Vertical Emittance reduction @ ESRF



ESRF coupling correction with spectral lines (ll)

A light for Science

Application to the ESRF storage ring

ESRF record-low vertical emittance: June 224 2010
At ID gaps open: € +5€, = 4.4 + 0.7 pm
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turopean Synchrotron Radiation Facility Vertical Emittance reduction @ ESRF



Low emittance tuning at Diamond for SuperB

Last year results on low emittance tuning and the achievement of a vertical emittance
of 2.2 pm have sparked quite some interest from the Damping ring community (CLIC
and ILC) and from the Super B

In collaboration with the SuperB team (P. Raimondi,. M. Biagini, S: Liuzzo) Diamond
has been used as a test-bed for new techniques for low emittance tuning based on
dispersion free steering and coupling free steerinq.
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Conclusions

Third generation light sources provide a very reliable source of high brightness, very
stable X-rays

The agreement wi
be foreseen for the non

cellent for the linear optics and improvements can

At Diamond several very differ
residual beta beating of 1% or less,

e all been succesfully operated with
coupling control.

Careful alignment and independent power s quadrupoles and
sextupoles have allowed a very good control of nonlinear optics

Diamond is an ideal test-bed for testing low emit
relevant for SuperB

techniques

Anyone interested is most welcome to join these studies.
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