ILC damping ring vacuum system design and instability modelling: possible applications to Super-B

Maxim Korostelev

University of Liverpool, and the Cockcroft Institute





Super-B Workshop, 18-19 May 2011, Oxford

#### Outline

- Lattice parameters and layout
- Mechanical design of vacuum system components
- Wake field calculations
- Instability modelling by parallel tracking code

# LC-UK damping rings research goals

Lattice design (Maxim Korostelev, Andy Wolski, U.Liverpool and Cockcroft Institute)

Vacuum system technical design and magnet support structures (Oleg Malyshev, STFC/ASTeC Norbert Collomb, John Lucas, Steve Postlethwaite, STFC/Technology)

Impedance and single-bunch instability modelling (Maxim Korostelev, Alex Thorley, Andy Wolski U.Liverpool and Cockcroft Institute)

**Coupled bunch instabilities** (Kai Hock, U.Liverpool and Cockcroft Institute)

Low-emittance tuning (Kosmas Panagiotidis, Andy Wolski, U.Liverpool and Cockcroft Institute, James Jones, STFC/ASTeC)

Coordination of LC-UK damping ring activity (Andy Wolski, U.Liverpool and Cockcroft Institute)

# **DCO4** layout of the ILC damping ring



- Energy of 5 GeV
- Circumference of 6.4 km, FODO arcs
- Long wiggler section provides fast radiation damping
- Identical lattice for both electron and positron damping rings
- Arrangement of the positron ring directly above the electron ring in the same tunnel

# **DCO4** lattice parameters and beam characteristics

| Beam energy             | 5 GeV                |  |
|-------------------------|----------------------|--|
| Circumference           | 6476.4 m             |  |
| RF frequency            | 650 MHz              |  |
| Harmonic number         | 14042                |  |
| Average current         | 400 mA               |  |
| Bunch population        | 2 x 10 <sup>10</sup> |  |
| Number of bunches       | 2610                 |  |
| Transverse damping time | 21.1 ms              |  |
| Wiggler peak field      | 1.6 T                |  |
| Energy loss per turn    | 10.23 MeV/turn       |  |

| Phase advance per arc cell  | 72°                   | 90°                   | 100°                  |
|-----------------------------|-----------------------|-----------------------|-----------------------|
| Momentum compaction         | $2.9 \times 10^{-4}$  | $1.6 \times 10^{-4}$  | $1.3 \times 10^{-4}$  |
| Normalized horiz. emittance | 6.4 μm                | 4.4 μm                | 3.9 µm                |
| RMS bunch length            | 6.0 mm                | 6.0 mm                | 6.0 mm                |
| RMS energy spread           | $1.27 \times 10^{-3}$ | $1.27 \times 10^{-3}$ | $1.27 \times 10^{-3}$ |
| RF voltage                  | 32.6 MV               | 20.4 MV               | 17.1 MV               |
| RF acceptance               | 2.38 %                | 1.96 %                | 1.72 %                |
| Synchrotron tune            | 0.063                 | 0.036                 | 0.028                 |
| Horizontal betatron tune    | 61.12                 | 71.12                 | 76.12                 |
| Vertical betatron tune      | 60.41                 | 71.41                 | 75.41                 |
| Natural horiz. chromaticity | -71.0                 | -89.2                 | -99.8                 |
| Natural vert. chromaticity  | -72.6                 | -91.0                 | -100.7                |

692 - quads, BPMs; 392 - sextupoles; 20 RF cavities

Choice of momentum compaction factor is a compromise between:

- beam emittance versus acceptance,
- required RF voltage versus instability thresholds

#### Damping ring vacuum system components

- Design work for a vacuum system components is generally focused on:
  - Vacuum chamber in the arcs
  - Vacuum chamber in the wiggler section
  - Insertions for beam position monitors (BPM)
  - Synchrotron radiation power absorbers
- to meet their key technical performance specifications
- to keep as low as possible the contribution to the overall machine impedance and impact on the beam dynamics

#### Vacuum chamber in the arcs



#### Vacuum chamber in the wiggler section







Wiggler vacuum chamber is based on a design by Cornell



# Synchrotron radiation power absorber







# **Insertion for BPM**





- Bellows design with multi-strip shield, based on a design from INFN-LNF has been implemented.
- BPM support system is based on the system used at the Diamond Light Source



# Wake field 3D simulations for BPM insertion

3323 2048 1103

- CST Particle Studio 3D time-domain simulations
- The simulations are based on the finite integration method.
- Hexagonal mesh is used to represent 3D model.







- Gaussian relativistic electror bunch with rms length of  $-cZ_{\parallel}(\omega) = \frac{\int_{-\infty}^{\infty} W_{\parallel}(z)e^{-i\frac{\omega z}{c}}dz}{\int_{-\infty}^{\infty} \lambda(z)e^{-i\frac{\omega z}{c}}dz}$ ;  $w_{\parallel}(z) = \frac{1}{2\pi c}\int_{-\infty}^{\infty} Z_{\parallel}(\omega)e^{i\frac{\omega z}{c}}d\omega$ 

### Wake field 3D simulations for absorber

- CST Particle Studio 3D time-domain simulations



The longitudinal wake potential

- Gaussian relativistic electron bunch with rms length of 6 mm.



The longitudinal wake function

### Instability modelling by parallel tracking code

The bunch charge distribution is represented by a number of point-like macroparticles with equal charge.

Change in energy deviation of each macroparticle resulting from wake field

d  $\Delta \delta_{pw}(z) = -\frac{QN_m r_e}{\gamma} \int_{z}^{z} \lambda(z') w_{\parallel}(z-z') dz'$ 

Macroparticle tracking running in parallel on a multi-core GPU

$$\delta_p^{n+1} = \delta_p^n + \frac{eV_{rf}}{E_0} \sin\left(\frac{\omega_{rf}z^n}{c}\right) - \frac{U_0}{E_0}(1+\delta_p^n)^2 + \sigma_{pq}(u_c,\delta_p^n) + \Delta\delta_{pw}(z^n)$$

$$z^{n+1} = z^n - \alpha_p C \delta_p^{n+1}$$

Performance increase approximately 60x over the sequential processing of an equivalent code running on a CPU



# **Results of tracking simulation vs** solution of the **Haissinski equation**



$$\lambda(z) = K \exp\left\{-\frac{z^2}{2\sigma_z^2} - \frac{4\pi\varepsilon_0 r_e N_b}{\alpha_p \gamma C \sigma_\delta^2} \int_0^z W_{\parallel}(z') dz'\right\}$$

$$\int_{-\infty}^{\infty} \lambda(z) dz = 1; W_{\parallel}(z') = \int_{z'}^{\infty} \lambda(z'') w_{\parallel}(z'-z'') dz''$$

Below the instability threshold, the results of the tracking simulation for the longitudinal charge distribution are in a very good agreement with the solution of the Haissinski equation.

0.007 0.006 0.004-0.003-0.002 ¢ 0.000--0.001--0.003 -0.004instability build-up -0.005 0.007 -0.007 0.004 0.011 0.018 0.024 0.031 0.038 0.045 0.051 0.058 0.005 r:t 0.004-0.003 0.001 d 0.000--0.001 -0.003 -0.004 -0.005-0.006-0.007 0.013 0.020 0.026 0.033 0.039 0.046 0.052 0.058 0.065 0.071

ct

steady-state

### **Single-bunch instability threshold**



The instability threshold is  $\sim 33 \times 10^{10}$  in the presence of the BPM wake field only.

# The instability threshold is $\sim 30 \times 10^{10}$ in the presence of the BPM wake field AND wake field from the absorbers.

In the case that only the BPM insertions are included, the effective value of |Z/n| is 10 m $\Omega$ ; this rises to 12 m $\Omega$  if the absorbers are included.

$$\left|\frac{Z_{\parallel}}{n}\right| < \sqrt{\frac{\pi}{2}} Z_0 \frac{\gamma \alpha_p \sigma_\delta^2 \sigma_z}{r_e N_0}$$

To remain below the instability threshold for the nominal maximum bunch population of  $2 \times 10^{10}$  particles, the effective broadband impedance should not exceed 235 m $\Omega$ , 130 m $\Omega$  and 105 m $\Omega$  for the lattices with momentum compaction factor  $2.9 \times 10^{-4}$ ,  $1.6 \times 10^{-4}$  and  $1.3 \times 10^{-4}$ , respectively.

# Conclusion

- The lattice and technical design validate for significant performance criteria, including low emittance tuning, short range wake fields and single bunch instability thresholds.
- A parallel tracking code has been developed for studies of bunch lengthening and single-bunch instability: a performance increase 60x over the sequential processing on a CPU.
- The tracking simulations are in very good agreement with analytical predictions from the Haissinski equation.
- The lowest instability threshold is more than an order of magnitude larger than the bunch population specified for the damping ring.
- Design of the synchrotron radiation power absorber, BPM insertion, vacuum vessels in a dipoles and wigglers provide sufficient margin in impedance for the rest of the vacuum system such as RF cavities and kickers.