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Introduction

• A number of storage rings have reported achieving vertical 
emittances of a few picometres.

• Achieving and maintaining emittances at this level requires 
precise correction of errors that lead to betatron coupling and 
vertical dispersion.

• The impact of systematic BPM errors is one of the major issues 
with ultra-low emittance tuning.

• I shall describe a technique for calibrating the BPMs from 
normal mode beam motion, which leads to a fast and 
straightforward procedure for ultra-low emittance tuning.
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Coordinate Systems in a BPM

Alignment and amplifier gain errors in BPMs can lead to erroneous 
measurements of dispersion.

lab x

lab y

BPM x

BPM y

Orbit change wrt energy
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Coordinate Systems in a BPM

What really counts for emittance generation is the mode II 
dispersion in the dipoles…

Normal mode II

Normal mode I
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Generation of Mode II Emittance

The normal mode (invariant) emittance is given by:

where the synchrotron radiation integrals are:

and:

It is the normal mode dispersion that counts for the generation of 
the invariant emittance.

Correcting the mode II dispersion reduces simultaneously the 
contribution of betatron coupling and dispersion to the emittance.
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Principle of Tuning Using the Normal Modes

To tune the ring for ultra-low invariant (mode II) emittance:

• calibrate the BPMs from observation of normal mode oscillations, to read the 
beam coordinates on the normal mode axes;

• use corrector elements (e.g. skew quadrupoles) to minimise the mode II 
dispersion in the dipoles.

Normal mode II

Normal mode I
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Calibrating a BPM
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We can obtain the 
components of the 
calibration matrix from 
correlation plots of the 
button signals during 
normal mode beam 
excitation…
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Typical Calibration Data from CesrTA
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Typical Calibration Data from CesrTA
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Calibration Data with Strong Coupling
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Testing the Calibration

• The calibrated BPM returns the beam coordinates along the 
normal mode axes.

• If we excite the beam in a normal mode, and plot the Fourier 
spectrum of the turn-by-turn coordinates, we should see the 
mode I tune in only the mode I data, and the mode II tune in 
only the mode II data…

uncalibrated

calibrated

Fourier spectra of turn-by-
turn coordinates from a 
single BPM, obtained during 
mode I beam excitation

mode I tune

mode II tune
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Correction Simulations

• To test the correction technique, we simulated the calibration 
and correction procedure for 1000 seeds of machine errors.

• The correction procedure involved orbit correction using 
steering magnets, followed by vertical or mode II dispersion 
correction using skew quadrupoles.

without calibration

with calibration

Note: nonlinear model used for BPM button response:
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Testing the Model Used for Correction

• The calibrated BPMs can be used to measure directly the mode II 
dispersion: this is model independent.

• The skew quad strengths needed to correct the mode II dispersion are 
calculated using a response matrix computed using a machine model.

• To test the model, we measured the change in mode II dispersion in 
response to a known change in strength of a single skew quadrupole;
then we used the model to fit changes in all skew quads from the change 
in mode II dispersion.

Note: Skew Quad 48W changed by K = -0.023 m-2.  This skew quad is located where x = 0.
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Testing the Model Used for Correction

• The agreement between the model and the machine may be 
reasonable, but is far from perfect…
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Results from Experimental Tests

• Tuning tests were carried out, using a fast x-ray beam size 
monitor to estimate the vertical emittance.

Machine conditions
RMS II

(mm)
RMS sy

(mm)

y at 
bsm

(mm)

y

(pm)

Following initial tuning (orbit, dispersion and 
coupling correction)

38 21 6 14

All skew quadrupoles turned off 32 27 3 24

After first correction of mode II dispersion 32 22 8 14

After further correction of mode II dispersion 31 28 13 21

• An increase in the emittance following a second iteration of the correction is 
often observed in simulation: it likely follows from the equal weighting given 
to the correction of the mode II dispersion at all BPMs.
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Results from Experimental Tests

• The measured mode II dispersion could not be well fitted using 
the available skew quadrupoles…

• …in this case, the effectiveness of the correction could be limited.
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Potential Improvement: Weighting the BPMs

• Where the horizontal dispersion is large, a small amount of betatron coupling 
can lead to a large mode II dispersion…

• …but the mode II dispersion is only significant for the generation of 
emittance in the dipoles and insertion devices…

• … which is where the dispersion is smallest.

• Giving equal weight to all BPMs is not the right thing to do!

Horizontal dispersion in CesrTA design lattice.  Circles indicate the positions of the BPMs.
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Final Remarks

• Normal mode BPM calibration provides a fast and (at least in 
simulation) very effective technique for ultra-low emittance 
tuning in storage rings.

• Data collection (including calibration) and analysis is very fast: a
few minutes at CesrTA.

• The technique is insensitive to BPM gain and alignment errors.

• The technique can be applied as easily to a large ring as to a 
small ring.

• Initial results at CesrTA look encouraging, but there is still some 
work needed to understand the full practical potential.

• Simulations for other machines (i.e. KEK-ATF) look similarly 
promising: it would be interesting to explore application to a 
collider… SuperB!


