

Magnet and Wiggler Expertise Within STFC

Jim Clarke ASTeC, STFC Daresbury Laboratory SuperB mini-workshop, Oxford, May 2011

Contents

- Introduction
- Electromagnets
- Permanent Magnets
- Superconducting Magnets
- Facilities & Codes
- Summary

Introduction

- Key centre of mass for accelerator magnet expertise within the UK resides in the Magnetics & Radiation Sources Group at Daresbury Laboratory
- 7 physicists who have all worked actively on various magnet projects
- Backed up by an experienced engineering team at Daresbury and Rutherford

Conventional Magnets

- Dipoles, Quadrupoles, Sextupoles, ...
- Kickers & Septums
- Recent projects
 - Diamond
 - ALICE
 - EMMA
- DC, AC, & Pulsed

Diamond Storage Ring

Diamond Booster, 5 Hz

ALICE

EMMA Quadrupoles

Cavity FQUAD DQUAD

EMMA Septum

Translation

Rotation

Septum out of vacuum chamber

Section view of septum in vacuum chamber

Maximum beam deflection angle	77	degrees
Maximum flux density in gap	0.91	т
C core magnet gap height	22.0	mm
Internal horizontal beam 'stay-clear'	62.5	mm
Turns on excitation coil	2	
Excitation half-sine-wave duration	25	μs
Excitation peak current	9.1	kA
Excitation peak voltage	900	V
Septum magnet repetition rate	20	Hz

EMMA Kickers

≻Concept

➢Before installation

➢Field quality

11 consecutive pulses; field probe signal

➢In-situ field probe

Max. strength	0.007 Tm	
Effective length	130 mm	
Field variation	1.5%	
Fall time	58 ns	
Timing jitter	1.7 ns	
Amplitude stability 4%.		

PM Quadrupoles for CLIC

- Wide tunability
- High gradient

Fully Open

Design has been patented Prototype to be constructed this year

Undulators & Wigglers

- Recent projects include
 - SRS
 - Diamond
 - ALPHA-X
 - ALICE
 - ILC
- Permanent magnets
- Superconducting

Diamond

In-vacuum undulator

Superconducting Wiggler (built by BINP)

SC Helical Undulators

SC Helical Undulator

- A 4m module containing 2 x 1.75m helical undulators (11.5 mm period) built by STFC
- Closed loop cryo system with cryocooler

Experience with Nb₃Sn

Magnet Test Facilities at Daresbury

Codes

- We have access to a wide variety of codes for magnet modelling
 - Opera 2D
 - Opera 3D
 - Tosca
 - Elektra
 - CST EM Studio (3D)

- RADIA (3D) very good for PM undulators
- There are 7 physicists in the MaRS group and they are all proficient with at least one of these codes

General Remarks

- The Magnetics and Radiation Sources Group within STFC is a key UK centre of mass for accelerator magnet expertise
- We have skills in all areas of magnets over all technologies

- We have access to powerful magnet design codes
- We operate a state of the art Magnet Test Laboratory

