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» Goal: precision tests of the standard model, Higgs boson characterization, searches for (rare) BSM phenomena, ...
» Precision measurement of Higgs boson couplings (few percent)
»  Measurement of the Higgs boson self-coupling via direct observation of the di-Higgs boson production
»  Search for heavy dark matter candidates, SUSY particles, new gauge bosons, Long-Lived Particles, ...

» Means: upgrade of the LHC optics and injectors to increase the beam intensity

»  Luminosity delivered by LHC (2009-2025): ~ 400 fb' / experiment [~250 fb' collected so far]
»  Target luminosity for HL-LHC (2029-2042): >3000 fb-! / experiment [one year of HL-LHC equivalent to ~10 years of LHC]
CoII|5|on event with 35 reconstructed vertices Real life event at the LHC emulating HL-LHC conditions

EXperiment a!ﬂ\. G RN CMS Experiment at the LHC, CERN
[@recorded: 2016- May 07 02:15:29.192000 GMT Datarecorded: 2016-0Oct-14 09:33:30,044032 GMT.

Run / Event 74.8; 283171 /85092595 / 185 ~130" vertices~

LHC:

<& About 40 collisions / bea Crossir »  An 'interggtion’ of interest (hard-scatter) at less that 1%
- “Upto 2°000 tracks / beam Ing I / = of the"collisions simultaneously recorded
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Detector upgrades required to deal with enhanced pileup interactions and radiation damage levels
»  >bx collision events per beam crossing, same spatial spread of the vertices along the beam lines
»  Up to 200 pileup events, about 10’000 tracks per event, and vertex densities >1.5 mm!

Reconstruction quality depends on track-vertex assignments, which become
ambiguous when track resolution is comparable to vertex separation

»  Vertex merging, fake association of “pileup” tracks with vertices, final state kinematics distorted, jet, lepton, photon identification affected
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Compact Muon Solenoid

Precision timing at CMS for HL-LHC

» CMS upgrades for pileup mitigations
»  Upgrade tracker and calorimeters with enhanced spatial segmentation
» A new MIP Timing Detector (MTD) for precision timing of minimum ionizing particpes (MIPs)

» “Slicing” the beam spot in successive O(30) ps time frames reduces the effective pileup
»  Spatially overlapping vertices resolved in the time dimension = helps recover track-purity of vertices of LHC operation
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pa Impact of precision timing - 1 T

» Significant sensitivity gains across the HL-LHC physics program

1. Object identification and Higgs boson physics
»  Gains in lepton/photon identification and b-tagging (at constant background) compound in multi-object final state
» E.g., expected HL-LHC HH significance equivalent to ~3 additional years of HL-LHC data taking

__________ H
CMS Phase-2 Simulation -\
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& [ —~nommD 2 1 @ 09 e = Signal Physics measurement MTD Impact
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| Impact of precision timing - 2

» Significant sensitivity gains across the HL-LHC physics program

2. New capability for CMS: time-of-flight particle identification
»  Flavour physics with heavy ions (wide angular acceptance)

3. Search for long-lived particles
»  Vast acceptance extension from vertex + object timing
» LLP mass (or mass splitting) reconstruction from velocity measurement of displaced vertex
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CMS MIP Timing Detector

>

>

Thin timing layers for minimum ionizing particles between the tracker and the calorimeters

»

Hermetic coverage coverage for Inl<3

Different sensor technologies for barrel and endcap timing layers, dictated by:

4
4
4

Technology maturity and radiation tolerance considerations

Compliance with CMS integration and CMS upgrade installation schedule

Cost and power budget effectiveness

MTD

BTL: LYSO bars + SiPM read-out

> TK/ECAL interface ~ 45 mm thick

> |n|<1.45 and pr> 0.7 GeV

= Active area ~ 38 m?; 332k channels
> Fluence at 3 ab™1: 2x10%4 n,q/cm?

ETL: Si with internal gain (LGAD)

= On the HGC nose ~ 99 mm thick
>1.6<|n|<3.0

= Active area ~ 14 m?; ~ 8.5M channels
= Fluence at 3 ab™: up to 2x10*> n.4/cm?




Detector module
« Two sensor modules
*  Front-end

Aen)

mini TECs

bar geometry (~3x3x56 cm®) y

16 bars / LYSO array
16 SiPM channels / array
» A single layer of sensor modules (basic detection unit): » Dual-end readout
» 16 LYSO:Ce crystal bars »  Two measurements per track - improve resolution by V2
»  Fast and bright scintillator with excellent radiation hardness > Mean time independent of impact point
»  Two arrays of 16 SiPMs with thermoelectric coolers (TECs) tieft 7 tright
» Compact, fast, and B-field imunune photodetectors . 4 .

with large photon detection efficiency

SiPM1 SiPM2

thar = 1; 2 [tiett + ttright]

» Biggest challenge for BTL performance and operation: SiPM radiation damage:
»  Single-photon Dark Count Rate (DCR) increasing up to O(10) GHz after 3000 fb' (2x10'4 n,,/cm?)
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e Key innovations to fight SiPM’s dark count rate e
» DCR noise cancellation in the redout chip (TOFHIR2) » Smart thermal management

with differential leading-edge discrimination

» Inverted and delayed pulse added to the original pulse

»  Preserve fast signal rising edge while cancelling correlated noise
»  Delay line approximated by a programmable RC network

Time resolution as a function of DCR before and
after DLED fllter [J. Varela IEEE— NSSMIC-ZOZOI
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»  TECs provide local cooling and heating capabilities relative
to the CO, thermal bath - x10 reduction of the dark count rate

»  with SiPMs at —45 9C during operations (CO, at —35 °C) and
in-situ annealing at +60 °C during technical stops (CO, at +10 °C)

integrated luminosity [fb ]
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» Module optimization and prototyping effort complete
Thermal operation with CO2 and TECs and response stability under thermal cycles validated
Readout ASIC (TOFHIR2) performance and functionality fully validated in laboratory and beams
Module prototypes with LYSO arrays (type 1) and SiPM cells (25 um) optimized to maximize S/N validated with beam data
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4
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Uniformity along the bar (old) and across the bars (new 2023) [before irradiation]
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. BTL prototype performance with beams
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» Target performance demonstrated > moving to production, assembly, and integration (2024-2025)
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Compact Muon Solenoid

Endcap timing layer (ETL) technology and structure

» Modules with Low Gain Avalanche Detectors (LGADS)

»

» Structure:

4
4

» Design and operation targets and challenge:

4
4
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Baseplate

LGADs bump-bonded to designated readout chip (ETROC)

mounted on two sides of cooling plates (disks)
Beam

axis
Independent cold (—35 °C) volume : stageable, serviceable, maintainable
Two disks on each side provide up to 2 measurements per track

» 50 ps per hit and 35 ps per track

I AL u wilin
L AL AL AL AT/

Readout chip targets handling small signals (down to ~5 fC).
Sensor targets >8 fC in high radiation field (fluence >1 x 10’ n,,/cm? in the 15% innermost region)
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CM
. ETL sensors: key prototype features e

\\\ \\ ‘ MTD =

Compact ion Solenia
Ara

» Silicon structure optimized for time measurements
»  Additional p+ implant to localize signal formation in a thin region aluminum / e ‘

XI

»  Thickness (50 pm) trade-off between signal size and time jitter of primary ionization

» Worked with multiple vendors to optimize LGADs arrays
»  Excellent uniformity, fill-factor, and production yield (>70%) per wafer

/
e'll h+
» Increase bias voltage to maintain gain after irradiation Epitaxiél IaI/er— p
»  Test beam studies show sparking damage to sensors at E>11.5 V/um C 7 L Electric field "

, N bStrate — p**
»  Prototype LGAD sensors characterized before and after irradiation proven L S“‘ e =i | r
/

to meet the ETL requirements (>8 fC) at E<11.5V/um e
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‘Compact
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Performance validation of ETL sensor-package prototypes

R |
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LGADs bump-bonded to the ETL prototype readout chips tested in beams:
v ETROCO : single analog channel
Meets resolution performance specifications
Functional / test beam in progress

LGAD+ETROCI1 resolution is 42-46 ps
from TDC digital outputs

2
- ajk)
ETROC2 setup

Beam spot

Bare ETROC?2 tests and with
ETROC2 bump-bonded to
LGADs so far successful
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| Korea contribution to the MTD

» KCMS responsible for the delivery of one layer of ETL sensors!

»

25% of the total endcap coverage

» Significant contributions to prototyping towards production:

»

14

LGADs prototyping and validation:
»  Detailed testing of prototype LGADs informed vendor qualification

»  Probe station measurements to verify quality and uniformity
of full-size wafers

ETROC2 testing

» Active in ETROC testing, including test beam campaigns for validation
of the performance of the LGADs + ETROC chain

Wafer processing:

»  Exploring wafer processing with one of the qualified LGADs
vendors for wafer thinning, dicing, and surface preparation
at Korean companies for the production phase

Bump-bonding:

»  Exploring options with Korean companies for LGAD-to-ETROC
bump-bonding during production
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: Summary

The MTD is one of the most challenging and rewarding detector of the CMS Upgrade
» It will be essential for the CMS physics program at HL-LHC with broad impact across several channels
»  Reduce pile-up contributions, improve object reconstruction, enable new physics opportunities

Mature design for MTD has been established through extensive prototyping and testing
»  Key contributions from Korean institutions in the ETL sensor testing and optimization

Sensor technologies () meet the design targets for HL-LHC
»  BTL design is fully validated and the detector is entering the production phase
» ETL is entering a decisive phase of final prototyping before moving to construction

KCMS contribution to prototyping and construction is paramount!

(*) Other detector system components (not discussed in this talk) are progressing as planned
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