

Precision timing with the CMS MIP Timing Detector (MTD) for High-Luminosity LHC

Tommaso Tabarelli de Fatis University of Milano Bicocca and INFN Milano-Bicocca

Outline

- HL-LHC: Introduction and motivations
- Experimental challenges and technology choices
- Results from prototyping
- Projected performance
- Summary

On behalf of the CMS MTD

China, France, Finland, Hungary, Italy, Korea, Latvia, Portugal, Spain, Switzerland, USA

High-Luminosity LHC

- ▶ Goal: precision tests of the standard model, Higgs boson characterization, searches for (rare) BSM phenomena, ...
 - Precision measurement of Higgs boson couplings (few percent)
 - Measurement of the Higgs boson self-coupling via direct observation of the di-Higgs boson production
 - Search for heavy dark matter candidates, SUSY particles, new gauge bosons, Long-Lived Particles, ...
- Means: upgrade of the LHC optics and injectors to increase the beam intensity
 - Luminosity delivered by **LHC** (2009-2025): \sim 400 fb⁻¹ / experiment [~250 fb⁻¹ c
 - Target luminosity for **HL-LHC** (2029-2042): >3000 fb⁻¹ / experiment

[~250 fb⁻¹ collected so far]

[one year of HL-LHC equivalent to ~10 years of LHC]

Collision event with 35 reconstructed vertices

Real life event at the LHC emulating HL-LHC conditions

HL-LHC: experimental challenges

- Detector upgrades required to deal with enhanced pileup interactions and radiation damage levels
 - >5x collision events per beam crossing, same spatial spread of the vertices along the beam lines
 - ▶ Up to **200 pileup events**, about **10'000 tracks per event**, and vertex densities >1.5 mm⁻¹
- Reconstruction quality depends on *track-vertex assignments*, which become ambiguous when track resolution is comparable to vertex separation
 - Vertex merging, fake association of "pileup" tracks with vertices, final state kinematics distorted, jet, lepton, photon identification affected

Precision timing at CMS for HL-LHC

- CMS upgrades for pileup mitigations
 - Upgrade tracker and calorimeters with enhanced spatial segmentation
 - A new *MIP Timing Detector* (MTD) for precision timing of minimum ionizing particpes (MIPs)
- "Slicing" the beam spot in successive O(30) ps time frames reduces the effective pileup
 - ▶ Spatially overlapping vertices resolved in the time dimension → helps recover track-purity of vertices of LHC operation

Impact of precision timing - 1

Significant sensitivity gains across the HL-LHC physics program

1. Object identification and Higgs boson physics

- Gains in lepton/photon identification and b-tagging (at constant background) compound in multi-object final state
- ▶ E.g., expected HL-LHC HH significance equivalent to ~3 additional years of HL-LHC data taking

Signal	Physics measurement	MTD Impact
HH	+25% gain in signal yield → Consolidate searches	Isolation, b-tagging, MET
H → γγ H → 4leptons	+25% statistical precision on xsecs → Couplings	Isolation, Vertex identification
VBF+H → ττ	+30% statistical precision on xsecs → Couplings	Isolation VBF tagging, MET
EWK SUSY	40% reducible background reduction → +150 GeV mass reach	MET

CMS MTD Technical Design Report: https://cds.cern.ch/record/2667167

Impact of precision timing - 2

Significant sensitivity gains across the HL-LHC physics program

- 2. New capability for CMS: time-of-flight particle identification
 - Flavour physics with heavy ions (wide angular acceptance)
- 3. Search for long-lived particles
 - Vast acceptance extension from vertex + object timing
 - LLP mass (or mass splitting) reconstruction from velocity measurement of displaced vertex

tvtx = back propagation of track times

MTD fundamentally changes how we execute these searches

CMS MIP Timing Detector

- ▶ Thin timing layers for minimum ionizing particles between the tracker and the calorimeters
 - Hermetic coverage coverage for lηl<3</p>
- Different sensor technologies for barrel and endcap timing layers, dictated by:
 - Technology maturity and radiation tolerance considerations
 - Compliance with CMS integration and CMS upgrade installation schedule
 - Cost and power budget effectiveness

BTL: LYSO bars + SiPM read-out

- ► TK/ECAL interface ~ 45 mm thick
- ightharpoonup | η | < 1.45 and p_T > 0.7 GeV
- ► Active area ~ 38 m²; 332k channels
- ► Fluence at 3 ab⁻¹: 2×10^{14} n_{eq}/cm^2

ETL: Si with internal gain (LGAD)

- ➤ On the HGC nose ~ 99 mm thick
- ightharpoonup 1.6 < |η| < 3.0
- ► Active area ~ 14 m²; ~ 8.5M channels
- ► Fluence at 3 ab⁻¹: up to 2×10^{15} n_{eq}/cm²

Barrel timing layer (BTL) technology and structure

- A single layer of sensor modules (basic detection unit):
 - ▶ 16 LYSO:Ce crystal bars
 - Fast and bright scintillator with excellent radiation hardness
 - Two arrays of 16 SiPMs with thermoelectric coolers (TECs)
 - Compact, fast, and B-field imunune photodetectors with large photon detection efficiency

Dual-end readout

- Two measurements per track \rightarrow improve resolution by $\sqrt{2}$
- Mean time independent of impact point

- ▶ Biggest challenge for BTL performance and operation: SiPM radiation damage:
 - Single-photon Dark Count Rate (DCR) increasing up to O(10) GHz after 3000 fb⁻¹ (2x10¹⁴ n_{eq}/cm²)

Key innovations to fight SiPM's dark count rate

- DCR noise cancellation in the redout chip (TOFHIR2)
 with differential leading-edge discrimination
 - Inverted and delayed pulse added to the original pulse
 - Preserve fast signal rising edge while cancelling correlated noise
 - Delay line approximated by a programmable RC network

Smart thermal management

- TECs provide local cooling and heating capabilities relative to the CO_2 thermal bath \rightarrow x10 reduction of the dark count rate
- with SiPMs at **-45** °C during operations (CO₂ at -35 °C) and in-situ annealing at **+60** °C during technical stops (CO₂ at +10 °C)

BTL prototype performance with beams

Module optimization and prototyping effort complete

- Thermal operation with CO2 and TECs and response stability under thermal cycles validated
- ▶ Readout ASIC (TOFHIR2) performance and functionality fully validated in laboratory and beams
- Module prototypes with LYSO arrays (type 1) and SiPM cells (25 μm) optimized to maximize S/N validated with beam data

Target performance demonstrated → moving to production, assembly, and integration (2024-2025)

Endcap timing layer (ETL) technology and structure

LGADs bump-bonded to designated readout chip (ETROC) mounted on two sides of cooling plates (disks)

> Structure:

- ▶ Independent cold (–35 °C) volume : stageable, serviceable, maintainable
- Two disks on each side provide up to 2 measurements per track
 - > 50 ps per hit and 35 ps per track

Design and operation targets and challenge:

- ▶ Readout chip targets handling small signals (down to ~5 fC).
- Sensor targets >8 fC in high radiation field (fluence >1 x 10^{15} n_{eq} /cm² in the 15% innermost region)

ETL sensors: key prototype features

Silicon structure optimized for time measurements

- Additional p+ implant to localize signal formation in a thin region
- Thickness (50 μm) trade-off between signal size and time jitter of primary ionization

Worked with multiple vendors to optimize LGADs arrays

- Excellent uniformity, fill-factor, and production yield (>70%) per wafer
- Increase bias voltage to maintain gain after irradiation
- For the total Test beam studies show sparking damage to sensors at E>11.5 V/μm
- Prototype LGAD sensors characterized before and after irradiation proven to meet the ETL requirements (>8 fC) at E≤11.5V/μm

Performance validation of ETL sensor-package prototypes

▶ LGADs bump-bonded to the ETL prototype readout chips tested in beams:

V ETROC0 : single analog channel

V ETROC1: with TDC and 4x4 clock tree

V ETROC2: 16x16 full size full functionality

▶ ETROC3: 16x16 preproduction chip

Verified

Meets resolution performance specifications

Functional / test beam in progress

Submission in 2024

LGAD+ETROC1 resolution is 42-46 ps from TDC digital outputs

$$\sigma_{i} = \sqrt{0.5 \cdot \left(\sigma_{ij}^{2} + \sigma_{ik}^{2} - \sigma_{jk}^{2}\right)}$$

ETROC2 setup

Beam spot

Bare ETROC2 tests and with ETROC2 bump-bonded to LGADs so far successful

Korea contribution to the MTD

- KCMS responsible for the delivery of one layer of ETL sensors!
 - 25% of the total endcap coverage
- Significant contributions to prototyping towards production:
 - LGADs prototyping and validation:
 - Detailed testing of prototype LGADs informed vendor qualification
 - Probe station measurements to verify quality and uniformity of full-size wafers
 - ETROC2 testing
 - Active in ETROC testing, including test beam campaigns for validation of the performance of the LGADs + ETROC chain
 - Wafer processing:
 - Exploring wafer processing with one of the qualified LGADs vendors for wafer thinning, dicing, and surface preparation at Korean companies for the production phase
 - **Bump-bonding:**
 - Exploring options with Korean companies for LGAD-to-ETROC bump-bonding during production

Summary

- The MTD is one of the most challenging and rewarding detector of the CMS Upgrade
 - It will be essential for the CMS physics program at HL-LHC with broad impact across several channels
 - Reduce pile-up contributions, improve object reconstruction, enable new physics opportunities
- Mature design for MTD has been established through extensive prototyping and testing
 - Key contributions from Korean institutions in the ETL sensor testing and optimization
- ► Sensor technologies (*) meet the design targets for HL-LHC
 - ▶ BTL design is fully validated and the detector is entering the production phase
 - ETL is entering a decisive phase of final prototyping before moving to construction
- KCMS contribution to prototyping and construction is paramount!

(*) Other detector system components (not discussed in this talk) are progressing as planned