CAPP's High Mass Axion Searches and Heterodyne-Based Variance Method

Junu Jeong

Center for Axion and Precision Physics Research, Institute for Basic Science

ChatGPT: physicists discussing near a hotel at Busan Haeundae Beach in winter

PNU-IBS workshop on Axion Physics : Search for axions, Dec 6th 2023 (Haeundae, Busan, South Korea)

Outline

- Search for Dark Matter Axion
- CAPP's High Mass Axion Searches
- Heterodyne-Based Variance Method

What is Axion?

CP-violating Lagrangian

$$\mathcal{L}_{\theta} = \frac{g^2 \bar{\theta}}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Why no EDM for neutron and proton?

⇒ Spontaneous symmetry breaking of global U(1) ⇒ pesudo-Nambu-Goldstone Boson, Axion

Titled Mexican-Hat Potential

Dark Matter Axion

Invisible axion (KSVZ or DFSZ, mass less than meV)

- Feebly interacts with standard particles
- Non-relativistic in sufficient quantities

Search for Dark Matter Axion

Search for Dark Matter Axion

CAPP's Dark Matter Axion Searches

CAPP's Dark Matter Axion Searches

CAPP's Dark Matter Axion Searches

High Mass Axion Search

CAPP's High Mass Axion Searches

CAPP's High Mass Axion Searches

Multiple-cell Cavity

J. Jeong et al., Phys. Lett. B 777, 412 (2018)

x1.6 ~ 3.2 frequency increase

- Less volume loss
- Single antenna
- Robust against tolerance
- Frequency selectivity

Multiple-cell Cavity

J. Jeong et al., Phys. Lett. B 777, 412 (2018)

x1.6 ~ 3.2 frequency increase

- Less volume loss
- Single antenna
- Robust against tolerance
- Frequency selectivity

Partition

CAPP-9T MC (Proof-of-concept Exp.)

CAPP-9T MC (Proof-of-concept Exp.)

CAPP-9T MC (Proof-of-concept Exp.)

CAPP-8TB 6G (8-cell)

CAPP-8TB 6G (8-cell)

CAPP-8TB 6G (8-cell)

na @ 5.297GHz

20

25

15

PNU-IBS workshop on Axion Physics

Wheel Tuning Mechanism

J. Kim et al., J. Phys. G 47, 035203 (2020)

x3 frequency increase

- No volume loss
- Single antenna
- High Q-factor

Wheel Tuning Mechanism

J. Kim et al., J. Phys. G 47, 035203 (2020)

x3 frequency increase

- No volume loss
- Single antenna
- High Q-factor

S. Bae et al., Phys. Rev. D 107, 015012 (2023)

x3 ~ 10 or more frequency increase

- No volume loss
- Single antenna
- High Q-factor
- Frequency selectivity

S. Bae et al., Phys. Rev. D 107, 015012 (2023)

x3 ~ 10 or more frequency increase

- No volume loss
- Single antenna
- High Q-factor
- Frequency selectivity

Auxetic structure

S. Bae et al., Phys. Rev. D 107, 015012 (2023)

x3 ~ 10 or more frequency increase

- No volume loss
- Single antenna
- High Q-factor

40

• Frequency selectivity

Proof-of-Concept Experiment (5x5)

Proof-of-Concept Experiment (5x5)

Proof-of-Concept Experiment (5x5)

CAPP's Novel Cavity Designs

Dish Antenna Haloscope

Dish Antenna Haloscope

BREAD

Effectively focus DAH photons on the lateral surface by an innovative parabolic mirror in solenoid geometry

$$P_{\text{BREAD}} \approx 1.3 \times 10^{-25} \text{ W} \left(\frac{B_0}{10 \text{ T}}\right)^2 \left(\frac{g_{\gamma}}{0.97}\right)^2 \left(\frac{A}{10 \text{ m}^2}\right)$$
$$\Delta t \approx 2 \text{ years} \left(\frac{\text{SNR}}{5}\right)^2 \left(\frac{10 \text{ T}}{B_0}\right)^4 \left(\frac{30}{g_{\gamma}}\right)^4 \left(\frac{10 \text{ m}^2}{A}\right)^2$$

BREAD

Effectively focus DAH photons on the lateral surface by an innovative parabolic mirror in solenoid geometry

$$P_{\text{BREAD}} \approx 1.3 \times 10^{-25} \text{ W} \left(\frac{B_0}{10 \text{ T}}\right)^2 \left(\frac{g_{\gamma}}{0.97}\right)^2 \left(\frac{A}{10 \text{ m}^2}\right)$$

$$\Delta t \approx 2 \text{ years} \left(\frac{\text{SNR}}{5}\right)^2 \left(\frac{10 \text{ T}}{B_0}\right)^4 \left(\frac{30}{g_\gamma}\right)^4 \left(\frac{10 \text{ m}^2}{A}\right)^2$$

Still some available space inside the bore where the m agnetic field is applied

Volume-Efficient Way?

Horn Array Haloscope

Horn Array Haloscope

Horn Array Haloscope

Single Horn Antenna

Projected Sensitivity

Power Detection

Optical Heterodyne Interferrometer

• Shifting the frequency (up/down conversion)

Optical Heterodyne Interferrometer

Average for long time ⇒ No interference effect

Optical Heterodyne Interferrometer

Variance?

Heterodyne-Based Variance Method

Heterodyne-Based Variance Method

Heterodyne-Based Variance Method

In terms of photon rate,

Photon rate (\dot{N}) = Number of Photon $(N) \times$ Sampling rate (f_s)

 $\mathrm{SNR}_{\sigma^2} \approx \frac{\dot{N}_s (1 + \dot{N}_p / f_s) \sqrt{f_s \Delta t}}{(\dot{N}_D + \dot{N}_p) \sqrt{2 + f_s / (\dot{N}_D + \dot{N}_p)}}$

In terms of photon rate,

Photon rate (\dot{N}) = Number of Photon $(N) \times$ Sampling rate (f_s)

$$\mathrm{SNR}_{\sigma^2} \approx \frac{\dot{N}_s (1 + \dot{N}_p / f_s) \sqrt{f_s \Delta t}}{(\dot{N}_D + \dot{N}_p) \sqrt{2 + f_s / (\dot{N}_D + \dot{N}_p)}}$$

In terms of photon rate,

Photon rate (\dot{N}) = Number of Photon $(N) \times$ Sampling rate (f_s)

 $\mathrm{SNR}_{\sigma^2} \approx \frac{\dot{N}_s (1 + \dot{N}_p / f_s) \sqrt{f_s \Delta t}}{(\dot{N}_D + \dot{N}_p) \sqrt{2 + f_s / (\dot{N}_D + \dot{N}_p)}}$

• Region I (
$$\dot{N}_D < f_s$$
, $\dot{N}_p < f_s$)
Single photon detection (best SNR)

55

In terms of photon rate,

Photon rate (\dot{N}) = Number of Photon $(N) \times$ Sampling rate (f_s)

 $\mathrm{SNR}_{\sigma^2} \approx \frac{\dot{N}_s (1 + \dot{N}_p / f_s) \sqrt{f_s \Delta t}}{(\dot{N}_D + \dot{N}_p) \sqrt{2 + f_s / (\dot{N}_D + \dot{N}_p)}}$

- **Region I** $(\dot{N}_D < f_s, \dot{N}_p < f_s)$ Single photon detection (best SNR)
- Region II $(\dot{N}_D > f_s, \dot{N}_p < f_s)$ Usual bolometer at microwaves

In terms of photon rate,

Photon rate (\dot{N}) = Number of Photon $(N) \times$ Sampling rate (f_s)

 $\mathrm{SNR}_{\sigma^2} \approx \frac{\dot{N}_s (1 + \dot{N}_p / f_s) \sqrt{f_s \Delta t}}{(\dot{N}_D + \dot{N}_p) \sqrt{2 + f_s / (\dot{N}_D + \dot{N}_p)}}$

- **Region I** $(\dot{N}_D < f_s, \dot{N}_p < f_s)$ Single photon detection (best SNR)
- **Region II** $(\dot{N}_D > f_s, \dot{N}_p < f_s)$ Usual bolometer at microwaves
- Region III $(\dot{N}_D > f_s, \dot{N}_p > f_s)$ Injecting probe enhances the SNR
- Region IV $(\dot{N}_D < f_s, \dot{N}_p > f_s)$ Injecting probe reduces the SNR

SNR Comparison

Scan rate

Summary (1)

- CAPP has advanced high-mass axion searches through the development of three innovative cavity designs.
 - Multiple-cell, Wheel tuning mechanism, Tunable photonic crystal
- The effectiveness of the multiple-cell design was initially showcased using a 2-cell cavity.
- Further, a near KSVZ run was successfully executed with an 8-cell cavity.
- A KSVZ run was conducted using a newly designed 3-cell cavity.
- We introduced a novel tuning method for photonic crystal cavities.
- A proof-of-concept experiment is being prepared, employing a tunable 5x5 photonic crystal cavity.
- To extend the search to much higher frequencies, the concept of a horn array haloscope has been proposed.

Summary (2)

- A new detection method, heterodyne haloscope, has been presented.
- It utilizes a probe tone to amplify weak signal power, effectively reducing the noise contribution from a power detector.
- The variance estimator with a heterodyne interferometer for a known coherence signal provides effective noises near the Standard Quantum Limit
- This technique is significant as it lays the groundwork for the development of a single photon detector

