

Axion-photon couplings in string theory

Lemon

Glimmers from the Axiverse:

Naomi Gendler, Harvard University

Lemo

- based on: hep-th/2309.13145 with Doddy Marsh, Liam McAllister, and Jakob Moritz and WIP with Junyi Cheng
- December 8, 2023, PNU-IBS workshop on Axion Physics: Search for Axions

Summary

Summary

We compute axion-photon couplings in string theory and compare to observational bounds.

1. Setting up the axiverse

1. Setting up the axiverse

2. Axion-photon couplings in the string axiverse

1. Setting up the axiverse

2. Axion-photon couplings in the string axiverse

3. Universality of the axiverse

1. Active ongoing experiments searching for them.

- 1. Active ongoing experiments searching for them.
- 2. Axion potentials are sensitive to UV physics, but are computable in string theory.

- 1. Active ongoing experiments searching for them.
- 2. Axion potentials are sensitive to UV physics, but are computable in string theory.
- 3. Can make fairly model-independent statements about axions in string theory.

- 1. Active ongoing experiments searching for them.
- 2. Axion potentials are sensitive to UV physics, but are computable in string theory.
- 3. Can make fairly model-independent statements about axions in string theory.

Axion experiments can teach us about where we live in the string theory landscape.

By axiverse we mean:

 $\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_{\mathbf{r}} \Lambda^4_I \left[1 - \cos\left(2\pi Q^a_I \phi_a\right) \right] + \dots$

By axiverse we mean:

 $\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_{\mathbf{r}} \Lambda^4_I \left[1 - \cos\left(2\pi Q^a_I \phi_a\right)\right] + \dots$

By axiverse we mean:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{\rm EM} \phi_a}{32\pi^2}$$

Axiverse data:

- $K^{ab} = metric on field space$
- $Q_I^a = \text{instanton charges}$
- $\Lambda_I^4 = \text{instanton actions}$

$F \wedge F + \sum_{I} \Lambda_{I}^{4} \left[1 - \cos \left(2\pi Q_{I}^{a} \phi_{a} \right) \right] + \dots$

By axiverse we mean:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{\rm EM} \phi_a}{32\pi^2}$$

Axiverse data:

- $K^{ab} = \text{metric on field space}$
- $Q_I^a = \text{instanton charges}$
- $\Lambda_I^4 = \text{instanton actions}$

$F \wedge F + \sum \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right) \right] + \dots$

(historical) string theory expectations:

axion decay constants ~ $10^{16} \, {\rm GeV}$ masses homogeneous on log scale

[Arvanitaki, Dimopoulos, Dubovski, Kaloper, March-Russell '09]

By axiverse we mean:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{\mathrm{E}M} \phi_a}{32\pi^2}$$

Axiverse data:

- $K^{ab} = \text{metric on field space}$
- $Q_I^a = \text{instanton charges}$

 $\Lambda_I^4 = \text{instanton actions}$

calculate explicitly in string theory

$F \wedge F + \sum \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right) \right] + \dots$

(historical) string theory expectations:

axion decay constants ~ $10^{16} \, {\rm GeV}$

masses homogeneous on log scale

[Arvanitaki, Dimopoulos, Dubovski, Kaloper, March-Russell '09]

I. Axions in string theory

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x \, F_{MN} F^{MN}$$

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

$$= \int d^4x \int_0^{2\pi R} dz \, F_{MN} F^{MN}$$

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

$$= \int d^4x \int_0^{2\pi R} dz F_{MN} F^{MN}$$
$$= \int d^4x \int_0^{2\pi R} dz (\partial_\mu A_5 \partial^\mu A_5) + \dots$$

M, N = 1, 2, 3, 4, 5

 $\mu = 1, 2, 3, 4$

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x \, F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

$$= \int d^4x \int_0^{2\pi R} dz \, F_{MN} F^{MN}$$

= $\int d^4x \int_0^{2\pi R} dz \, (\partial_\mu A_5 \, \partial^\mu A_5) + \dots \quad \mu = 1, 2, 3, 4$
= $\int d^4x \left(\frac{1}{\pi R}\right) \partial_\mu a \, \partial^\mu a + \dots \quad \text{where} \quad a = \int_0^{2\pi R} A_5 \, dz$

$$\mu = 1, 2, 3, 4$$

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x \, F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

$$= \int d^4x \int_0^{2\pi R} dz F_{MN} F^{MN}$$

= $\int d^4x \int_0^{2\pi R} dz (\partial_\mu A_5 \partial^\mu A_5) + \dots \quad \mu = 1, 2, 3, 4$
= $\int d^4x \left(\frac{1}{\pi R}\right) \partial_\mu a \ \partial^\mu a + \dots \quad \text{where} \quad a = \int_0^{2\pi R} A_5 \ dz$

M, N = 1, 2, 3, 4, 5

$$\mu = 1, 2, 3, 4$$

a is an axion!

Consider a 5 dimensional theory with a gauge field:

$$S_5 = \int d^5 x \, F_{MN} F^{MN}$$

Now we compactify this theory on a circle of radius R:

$$= \int d^4x \int_0^{2\pi R} dz F_{MN} F^{MN}$$

= $\int d^4x \int_0^{2\pi R} dz (\partial_\mu A_5 \partial^\mu A_5) + \dots \quad \mu = 1, 2, 3, 4$
= $\int d^4x \left(\frac{1}{\pi R}\right) \partial_\mu a \ \partial^\mu a + \dots \quad \text{where} \quad a = \int_0^{2\pi R} A_5 \ dz \qquad a \text{ is an axion!}$

Lesson: extra-dimensional gauge fields integrated over loops are axions.

$$\mu = 1, 2, 3, 4$$

String theory exists in 10 dimensions. To get a 4D theory, we compactify on a 6D manifold.

String theory exists in 10 dimensions. To get a 4D theory, we compactify on a 6D manifold. Gauge fields in 10 dimensions give rise to 4D axions:

$$S = \int d^{10}x \,\mathcal{L}(A_{10D}) + .$$

$A_{10D} = 10D$ gauge field

String theory exists in 10 dimensions. To get a 4D theory, we compactify on a 6D manifold. Gauge fields in 10 dimensions give rise to 4D axions:

$$S = \int d^{10} x \, \mathcal{L}(A_{10D}) + \dots$$

 ℓ_i some loop

$$A_{10D} = 10D$$
 gauge field

String theory exists in 10 dimensions. To get a 4D theory, we compactify on a 6D manifold. Gauge fields in 10 dimensions give rise to 4D axions:

$$S = \int d^{10} x \, \mathcal{L}(A_{10D}) + \dots$$

 ℓ_i some loop

$$A_{10D} = 10D$$
 gauge field

String theory exists in 10 dimensions. To get a 4D theory, we compactify on a 6D manifold. Gauge fields in 10 dimensions give rise to 4D axions:

$$S = \int d^{10} x \, \mathcal{L}(A_{10D}) + \dots$$

 ℓ_i some loop

 $a_i :=$ $J\ell_i$

These manifolds can have hundreds of "loops" \rightarrow hundreds of axions!

$$A_{10D} = 10D$$
 gauge field

Axion properties from string theory

Axion properties from string theory

• Axions in 4 dimensions are a consequence of geometry in string theory.
- Axions in 4 dimensions are a consequence of geometry in string theory.
- Axion masses and decay constants are also due to the geometry.

- Axions in 4 dimensions are a consequence of geometry in string theory.
- Axion masses and decay constants are also due to the geometry.

- Axions in 4 dimensions are a consequence of geometry in string theory.
- Axion masses and decay constants are also due to the geometry.

mass of axion *i*: $m_i \sim \exp\left(-\operatorname{vol}(\ell_i)\right)$

- Axions in 4 dimensions are a consequence of geometry in string theory.
- Axion masses and decay constants are also due to the geometry.

mass of axion *i*: $m_i \sim \exp\left(-\operatorname{vol}(\ell_i)\right)$

decay constant of axion *i*: $f_i \sim \frac{1}{\operatorname{vol}(\ell_i)}$

Eventual goal: build the standard model in type IIB string theory.

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have:

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have:

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have:

- QCD lives on some 4-cycle $D_{
 m QCD}$ v
- QED lives on an intersecting 4-cycl

with
$$g^2 = \frac{1}{\operatorname{vol}(D_{\mathrm{QCD}})}$$
 le D_{QED}

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have:

 ${\,\,}$ QCD lives on some 4-cycle $D_{\rm OCD}$ v

QED lives on an intersecting 4-cycl

For now:

with
$$g^2 = \frac{1}{\operatorname{vol}(D_{\mathrm{QCD}})}$$
 le D_{QED}

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have:

 ${\,\,}$ QCD lives on some 4-cycle $D_{\rm OCD}$ v

QED lives on an intersecting 4-cycl

For now:

Choose $D_{\rm QCD}$ and $D_{\rm QED}$

with
$$g^2 = \frac{1}{\operatorname{vol}(D_{\mathrm{QCD}})}$$
 le D_{QED}

Eventual goal: build the standard model in type IIB string theory.

How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have:

- ${}_{\bullet}$ QCD lives on some 4-cycle $D_{\rm OCD}$ v
- QED lives on an intersecting 4-cycl

For now:

- Choose D_{QCD} and D_{QED}
- Dilate the overall voume of the Calabi-Yau until $vol(D_{OCD})$ gives right gauge coupling of QCD in the IR.

with
$$g^2 = \frac{1}{\operatorname{vol}(D_{\mathrm{QCD}})}$$

le D_{QED}

Setup: we compactify type IIB string theory on a Calabi-Yau threefold.

Setup: we compactify type IIB string theory on a Calabi-Yau threefold.

The effective theory contains *N* axions:

$$\theta_A = \int_{D_A} C_4$$
 $\begin{array}{l}
C_4 = \text{Ramond-Ramond four} \\
D_A = a \text{ four-cycle}
\end{array}$

Setup: we compactify type IIB string theory on a Calabi-Yau threefold.

The effective theory contains N axions:

The QCD axion, $\theta_{\rm QCD}$, is the one associated to C_4 integrated over $D_{\rm QCD}$, the four-cycle that hosts QCD.

$$\theta_A = \int_{D_A} C_4$$
 $\begin{array}{l}
C_4 = \text{Ramond-Ramond four} \\
D_A = \text{a four-cycle}
\end{array}$

Setup: we compactify type IIB string theory on a Calabi-Yau threefold.

The effective theory contains N axions:

The QCD axion, $heta_{
m OCD}$, is the one associated to C_4 integrated over $D_{
m OCD}$, the four-cycle that hosts QCD.

Likewise, the QED axion, $heta_{
m OED}$, is the one associated to C_4 integrated over $D_{
m OED}$, the four-cycle that hosts QED.

$$\theta_A = \int_{D_A} C_4$$
 $\begin{array}{l}
C_4 = \text{Ramond-Ramond four} \\
D_A = \text{a four-cycle}
\end{array}$

Setup: we compactify type IIB string theory on a Calabi-Yau threefold.

The effective theory contains N axions:

The QCD axion, $heta_{
m OCD}$, is the one associated to C_4 integrated over $D_{
m OCD}$, the four-cycle that hosts QCD.

Likewise, the QED axion, $heta_{
m OED}$, is the one associated to C_4 integrated over $D_{
m OED}$, the four-cycle that hosts QED.

We have: $\theta_{QCD}, \theta_{QED}, \theta_3, \dots, \theta_N$

$$\theta_A = \int_{D_A} C_4$$
 $\begin{array}{l}
C_4 = \text{Ramond-Ramond four} \\
D_A = \text{a four-cycle}
\end{array}$

Setup: we compactify type IIB string theory on a Calabi-Yau threefold.

The effective theory contains N axions:

The QCD axion, $heta_{
m OCD}$, is the one associated to C_4 integrated over $D_{
m OCD}$, the four-cycle that hosts QCD.

four-cycle that hosts QED.

We have: $\theta_{OCD}, \theta_{OED}, \theta_{3}, \dots \theta_{N}$

$$\theta_A = \int_{D_A} C_4$$
 $\begin{array}{l}
C_4 = \text{Ramond-Ramond four} \\
D_A = \text{a four-cycle}
\end{array}$

Likewise, the QED axion, $heta_{
m OED}$, is the one associated to C_4 integrated over $D_{
m OED}$, the

N is usually $\mathcal{O}(100s)$ — are such theories ruled out?

• D-branes stacked on cycles \rightarrow gauge theories

- D-branes stacked on cycles \rightarrow gauge theories
- Gauge fields integrated over cycles \rightarrow axions

- D-branes stacked on cycles \rightarrow gauge theories
- Gauge fields integrated over cycles \rightarrow axions
- Space-like D-branes wrapped on cycles \rightarrow instantons

- D-branes stacked on cycles \rightarrow gauge theories
- Gauge fields integrated over cycles \rightarrow axions
- Space-like D-branes wrapped on cycles \rightarrow instantons
- These generate potentials for the axions

Instantons generate a potential of the following form:

Instantons generate a potential of the following form:

$$V_{\text{axion}} \sim \sum_{i} \Lambda_{I}^{4} [1 - \cos(\theta_{I} + \varphi_{I})]$$

 Λ_I^4 : instanton energy scales

$$\Lambda_I^4 \sim M_{pl}^3 M_{\rm SUSY} e^{-2\pi Q_I^a \operatorname{vol}(D_a)}$$

Instantons generate a potential of the following form:

$$V_{\text{axion}} \sim \sum_{i} \Lambda_{I}^{4} \left[1 - \cos(\theta_{I} + \varphi_{I})\right]$$

 Λ_I^4 : instanton energy scales

$$\Lambda_I^4 \sim M_{pl}^3 M_{\rm SUSY} e^{-2\pi Q_I^a \operatorname{vol}(D_a)}$$

$arphi_i$: phases set by UV physics (generally assumed O(1))

What geometries do we compactify string theory on?

What geometries do we compactify string theory on?

The largest known class comes from a database called the "Kreuzer-Skarke database."

What geometries do we compactify string theory on?

The largest known class comes from a database called the "Kreuzer-Skarke database."

Up to 10^{428} geometries can be constructed from this database.

What geometries do we compactify string theory on?

The largest known class comes from a database called the "Kreuzer-Skarke database."

Up to 10^{428} geometries can be constructed from this database.

We use a publicly available package called CYTools to efficiently generate the data needed for axion effective theories.

What geometries do we compactify string theory on?

Up to 10^{428} geometries can be constructed from this database.

We use a publicly available package called CYTools to efficiently generate the data needed for axion effective theories.

use it to calculate axion masses and decay constants.

- The largest known class comes from a database called the "Kreuzer-Skarke database."

CYTools can compute volumes of loops in Calabi-Yau geometries, so we can easily

Type IIB explicit axiverse

Type IIB explicit axiverse

masses span many decades

Type IIB explicit axiverse

decay constants are not $10^{16} \, GeV$

 Now have the capability to construct a semi-realistic axiverse from compactifications on Calabi-Yau threefolds.

- Now have the capability to construct a semi-realistic axiverse from compactifications on Calabi-Yau threefolds.
- Are these models ruled out by observations?

- Now have the capability to construct a semi-realistic axiverse from compactifications on Calabi-Yau threefolds.
- Are these models ruled out by observations?
- A first study: QCD θ -angles in the string axiverse [Demirtas, NG, Long, McAllister, Moritz '21]

- Now have the capability to construct a semi-realistic axiverse from compactifications on Calabi-Yau threefolds.
- Are these models ruled out by observations?
- A first study: QCD θ -angles in the string axiverse [Demirtas, NG, Long, McAllister, Moritz '21]
- axiverse.

I will now present some results on studying axion-photon couplings in this

Axion detection

• We will focus on constraints coming from the axion coupling to photons:

from the axion coupling to photons: $\mathcal{L}_{a\gamma\gamma} \sim g_{a\gamma\gamma} \theta F \tilde{F}$

Axion detection

• We will focus on constraints coming from the axion coupling to photons:

 $\mathcal{L}_{a\gamma\gamma} \sim g_{a\gamma\gamma} \theta F F$

solid colors = regions that are ruled out

diagonal line = region where the QCD axion would live

Recall our starting Lagrangian:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q_{\rm EM}^a \phi_b}{32\pi^2}$$

$\frac{\rho_a}{2}F \wedge F + \sum_I \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right)\right]$

Recall our starting Lagrangian:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q_{\rm EM}^a \phi}{32\pi^2}$$

To read off $g_{a\gamma\gamma}$:

$\frac{\rho_a}{2}F \wedge F + \sum_I \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right)\right]$

How to read off g_{ayy} ?

Recall our starting Lagrangian:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{\mathrm{E}M} \phi_b}{32\pi^2}$$

To read off $g_{a\gamma\gamma}$:

- 1. Canonically normalize kinetic term
- 2. Go to mass eigenbasis

$\frac{\partial_a}{2}F \wedge F + \sum_{I} \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right)\right]$

Recall our starting Lagrangian:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_I \Lambda^4_I \left[1 - \cos\left(2\pi Q^a_I \phi_a\right) \right]$$

To read off $g_{a\gamma\gamma}$:

1. Canonically normalize kinetic term

2. Go to mass eigenbasis

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\varphi_{a}\partial^{\mu}\varphi^{a} + \sum_{a}\frac{c_{a}\varphi_{a}}{32\pi^{2}}F \wedge F + \frac{1}{2}\sum_{a}m_{a}^{2}\varphi_{a}^{2} + \dots$$

Recall our starting Lagrangian:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_I \Lambda^4_I \left[1 - \cos\left(2\pi Q^a_I \phi_a\right) \right]$$

To read off $g_{a\gamma\gamma}$:

1. Canonically normalize kinetic term

2. Go to mass eigenbasis

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\varphi_{a}\partial^{\mu}\varphi^{a} + \sum_{a}\frac{c_{a}\varphi_{a}}{32\pi^{2}}F \wedge F + \frac{1}{2}\sum_{a}m_{a}^{2}\varphi_{a}^{2} + \dots$$

Then:

Start with axion Lagrangian in terms of Calabi-Yau data:

$$\mathcal{L} = -\frac{1}{2}K^{ab}\partial_{\mu}\phi_{a}\partial^{\mu}\phi_{b} + \frac{Q^{a}_{EM}\phi_{a}}{32\pi^{2}}F\wedge F + \sum_{I}\Lambda^{4}_{I}\left[1 - \cos\left(2\pi Q^{a}_{I}\phi_{a}\right)\right]$$

Start with axion Lagrangian in terms of Calabi-Yau data:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_I \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right) \right]$$

Goal/question: in a basis where all axions are mass and kinetic eigenstates, what are the couplings of those axions to $F \wedge F$?

Start with axion Lagrangian in terms of Calabi-Yau data:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_I \Lambda_I^4 \left[1 - \cos\left(2\pi Q_I^a \phi_a\right) \right]$$

the couplings of those axions to $F \wedge F$?

Two key facts in type IIB:

- 1. In the geometric regime, the Λ_I^4 are exponentially hierarchical.
- 2. There is an E&M instanton.

Goal/question: in a basis where all axions are mass and kinetic eigenstates, what are

Start with axion Lagrangian in terms of Calabi-Yau data:

$$\mathcal{L} = -\frac{1}{2} K^{ab} \partial_{\mu} \phi_a \partial^{\mu} \phi_b + \frac{Q^a_{EM} \phi_a}{32\pi^2} F \wedge F + \sum_I \Lambda^4_I \left[1 - \cos\left(2\pi Q^a_I \phi_a\right) \right]$$

the couplings of those axions to $F \wedge F$?

Two key facts in type IIB:

- 1. In the geometric regime, the Λ_I^4 are exponentially hierarchical.
- 2. There is an E&M instanton.

Goal/question: in a basis where all axions are mass and kinetic eigenstates, what are

General lesson: only axions heavier than the QED axion couple to photons.

What does a typical model look like?

- N = 200
- 3 axions have non-trivial coupling to photons
- The other 197 are "invisible"

What does a typical model look like?

- N = 200
- 3 axions have non-trivial coupling to photons
- The other 197 are "invisible"

Lesson: in this landscape, even if we detect an axion, we won't detect the whole axiverse.

What does a typical model look like?

- N = 200
- 3 axions have non-trivial coupling to photons
- The other 197 are "invisible"

Lesson: in this landscape, even if we detect an axion, we won't detect the whole axiverse.

"the invisible Axiverse"

General lesson: only axions heavier than the QED axion couple to photons.

What are the consequences?

General lesson: only axions heavier than the QED axion couple to photons.

What are the consequences?

Suppose that in the mass eigenbasis, the distribution of decay constants is:

General lesson: only axions heavier than the QED axion couple to photons.

What are the consequences?

General lesson: only axions heavier than the QED axion couple to photons.

[NG, Marsh, McAllister, Moritz '23]

Suppose that in the mass eigenbasis, the distribution of decay constants is:

What are the consequences?

General lesson: only axions heavier than the QED axion couple to photons.

[NG, Marsh, McAllister, Moritz '23]

Suppose that in the mass eigenbasis, the distribution of decay constants is:

Axion detection

$$g_{a\gamma\gamma} = \sqrt{\sum_{m_i \in m_{\exp}} g_i^2}$$

solid colors = regions that are ruled out

transparent colors = regions that will be probed by future experiments

diagonal line = region where the QCD axion would live

[NG, Marsh, McAllister, Moritz '23] [also see Halverson, Long, Nelson, Salinas '19]

• $g_{a\gamma\gamma}$ increases with N

[NG, Marsh, McAllister, Moritz '23] [also see Halverson, Long, Nelson, Salinas '19]

- $g_{a\gamma\gamma}$ increases with N
- CYs are mostly unconstrained by CAST

[NG, Marsh, McAllister, Moritz '23] [also see Halverson, Long, Nelson, Salinas '19]
Axion-photon couplings in the KS axiverse

- $g_{a\gamma\gamma}$ increases with N
- CYs are mostly unconstrained by CAST
- start to push up against future bounds at large N

[NG, Marsh, McAllister, Moritz '23] [also see Halverson, Long, Nelson, Salinas '19]

Axion-photon couplings in the KS axiverse

- $g_{a\gamma\gamma}$ increases with N
- CYs are mostly unconstrained by CAST
- start to push up against future bounds at large N
- Even in models constrained by CAST, only a few axions are detectable

[NG, Marsh, McAllister, Moritz '23] [also see Halverson, Long, Nelson, Salinas '19]

III. Universality in the string axiverse

as N increases:

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

as N increases:

Axion-photon couplings increase

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz '21 NG, Marsh, McAllister, Moritz '23]

as *N* increases:

- Axion-photon couplings increase
- Dark matter relic densities decrease [Demirtas, NG, Long, McAllister, Moritz '21]

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz '21 NG, Marsh, McAllister, Moritz '23]

as *N* increases:

- Axion-photon couplings increase
- Dark matter relic densities decrease [Demirtas, NG, Long, McAllister, Moritz '21]
- The number of axion minima stays $\mathcal{O}(1)$

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz '21 NG, Marsh, McAllister, Moritz '23]

[NG, Janssen, Kleban, La Madrid, Mehta '23]

as *N* increases:

- Axion-photon couplings increase
- Dark matter relic densities decrease [Demirtas, NG, Long, McAllister, Moritz '21]
- The number of axion minima stays $\mathcal{O}(1)$
- Axion decay constants decrease

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz '21 NG, Marsh, McAllister, Moritz '23]

[NG, Janssen, Kleban, La Madrid, Mehta '23]

[Demirtas, Long, McAllister, Stillman '18; Demirtas, Long, Marsh, McAllister, Mehta '20]

as *N* increases:

- Axion-photon couplings increase
- Dark matter relic densities decrease [Demirtas, NG, Long, McAllister, Moritz '21]
- The number of axion minima stays $\mathcal{O}(1)$
- Axion decay constants decrease

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz '21 NG, Marsh, McAllister, Moritz '23]

[NG, Janssen, Kleban, La Madrid, Mehta '23]

[Demirtas, Long, McAllister, Stillman '18; Demirtas, Long, Marsh, McAllister, Mehta '20]

• Stringy contributions to the QCD θ -angle decrease [Demirtas, NG, Long, McAllister, Moritz '21]

as *N* increases:

- Axion-photon couplings increase
- Dark matter relic densities decrease [Demirtas, NG, Long, McAllister, Moritz '21]
- The number of axion minima stays $\mathcal{O}(1)$
- Axion decay constants decrease

All of these behaviors are a consequence of one underlying fact:

By scanning over tens of thousands of Calabi-Yau compactifications, we find that

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz '21 NG, Marsh, McAllister, Moritz '23]

[NG, Janssen, Kleban, La Madrid, Mehta '23]

[Demirtas, Long, McAllister, Stillman '18; Demirtas, Long, Marsh, McAllister, Mehta '20]

• Stringy contributions to the QCD θ -angle decrease [Demirtas, NG, Long, McAllister, Moritz '21]

As N increases, hierarchies in instanton scales increase.

Instanton scale hierarchies increase as a function of N.

Instanton scale hierarchies increase as a function of N.

This leads to correlations between **axion physics** and **the number of axions** in a given theory.

Instanton scale hierarchies increase as a function of N.

This leads to correlations between axion physics and the number of axions in a given theory.

This is something you would have no reason to suspect in a generic axion theory!

Instanton scale hierarchies increase as a function of N.

This leads to correlations between axion physics and the number of axions in a given theory.

This is something you would have no reason to suspect in a generic axion theory!

String theory can teach us lessons about axions that we wouldn't see from a model-building perspective.

Key fact: in all explicit studies of the string axiverse, we demand control of the α' expansion.

Key fact: in all explicit studies of the string axiverse, we demand control of the α' expansion.

 \rightarrow all divisor volumes must be bigger than 1 in string units.

Key fact: in all explicit studies of the string axiverse, we demand control of the α' expansion.

 \rightarrow all divisor volumes must be bigger than 1 in string units.

As N increases:

Ratios between volumes are constrained, but number of divisors grows [Cheng, NG WIP]

Key fact: in all explicit studies of the string axiverse, we demand control of the α' expansion.

 \rightarrow all divisor volumes must be bigger than 1 in string units.

As N increases:

- Ratios between volumes are constrained, but number of divisors grows [Cheng, NG WIP] Ensuring that the smallest divisors have volumes >1 entails that the
- largest divisors are huge

Key fact: in all explicit studies of the string axiverse, we demand control of the α' expansion.

 \rightarrow all divisor volumes must be bigger than 1 in string units.

As N increases:

- Ratios between volumes are constrained, but number of divisors grows [Cheng, NG WIP] Ensuring that the smallest divisors have volumes >1 entails that the
- largest divisors are huge

Question: is this behavior unique to Calabi-Yau toric hypersurfaces?

Or is it a more universal feature, possibly driven by principles of quantum gravity?

• We constructed an ensemble of axiverses in type IIB string theory

- We constructed an ensemble of axiverses in type IIB string theory
- decrease.

 Hierarchies in Calabi-Yau geometries led to new expectations for the scales of the problem: as the number of axions increases, the decay constants

- We constructed an ensemble of axiverses in type IIB string theory
- decrease.

 Hierarchies in Calabi-Yau geometries led to new expectations for the scales of the problem: as the number of axions increases, the decay constants

• In the models we studied, we calculated the effective axion-photon couplings.

- We constructed an ensemble of axiverses in type IIB string theory
- decrease.

 Hierarchies in Calabi-Yau geometries led to new expectations for the scales of the problem: as the number of axions increases, the decay constants

In the models we studied, we calculated the effective axion-photon couplings.

• We found a mechanism that generically suppresses axion-photon couplings.

- We constructed an ensemble of axiverses in type IIB string theory
- decrease.

- photon coupling experiments.

 Hierarchies in Calabi-Yau geometries led to new expectations for the scales of the problem: as the number of axions increases, the decay constants

In the models we studied, we calculated the effective axion-photon couplings.

• We found a mechanism that generically suppresses axion-photon couplings.

Even string theory models with hundreds of axions are not ruled out by axion-

Thank you!