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We compute axion-photon couplings in string theory
and compare to observational bounds.
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3. Universality of the axiverse
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Why do string theorists care about axions?

1. Active ongoing experiments searching for them.

2. Axion potentials are sensitive to UV physics, but are computable In
string theory.

3. Can make fairly model-independent statements about axions in
string theory.

Axion experiments can teach us about
where we live In the string theory landscape.
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By axiverse we mean:

__ 1 ab L | Q%M¢a
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FAF + Z A7 [1 —cos (2mQ%0,)] +...
I

Axiverse data: (historical) string theory expectations:

K% — metric on field space

a axion decay constants ~ 101° GeV
¢ 7 — Instanton charges q

masses homogeneous on log scale
A4 — inStanton aCt|OnS [Arvanitaki, Dimopoulos, Dubovski, Kaloper, March-Russell ’09]

calculate explicitly in string theory
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Axions from extra dimensions

Consider a 5 dimensional theory with a gauge field:

Sy = Jde F " M,N =12345

Now we compactify this theory on a circle of radius R:

2R
0

27R
— Jd4)(,’[ dZ (a,uA5 O”AS) + ... H = 1929394
0

1 2nR
— {d“x <_R) dadla+ ... where a= [ As dz a Is an axion!
T
0

Lesson: extra-dimensional gauge fields integrated over loops are axions.
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Axions from string theory

String theory exists in 10 dimensions.
To get a 4D theory, we compactify on a 6D manifold.

Gauge fields in 10 dimensions give rise to 4D axions:

S = /dmx L(Aiop) + - .. A, op = 10D gauge field

' . some loop

l"’”

y
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U; .— / AlOD
g.
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These manifolds can have hundreds of “loops” — hundreds of axions!
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Axion properties from string theory

* Axions in 4 dimensions are a conseguence of geometry in string theory.

 Axion masses and decay constants are also due to the geometry.

}\» » axions g .— / AlOD
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(/

mass of axioni:  m. ~ exp (—V()l(fl-))

1
decay constant of axion i: .~

" vol(%)
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Eventual goal: build the standard model in type |IB string theory.
How? Stacks of D7-branes on 4-cycles give rise to gauge theories.

So we would have: t\ " <
1 s\

. QCD lives on some 4-cycle Dgcp With gi=— , , J
VOI(DQCD) )

- QED lives on an intersecting 4-cycle Dqpp,

For now:

» Choose Dqcp and Dgpp

+ Dilate the overall voume of the Calabi-Yau until vol(Dqp) gives right
gauge coupling of QCD in the IR.
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Axions In type lIB string theory

Setup: we compactify type lIB string theory on a Calabi-Yau threefold.

The effective theory contains N axions: 0, — / ¢, ©4+= Ramond-Ramond four-form
D a

D 4 = a four-cycle

The QCD axion, HQCD, s the one associated to C, integrated over D p, the
four-cycle that hosts QCD.

Likewise, the QED axion, HQED, is the one associated to ( integrated over D, the
four-cycle that hosts QED.

N is usually ©(100s)
We have: HQCD’ HQED’ Os,... Oy — are such theories ruled out?
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 D-branes stacked on cycles — gauge theories

e (Gauge fields integrated over cycles — axions

o Space-like D-branes wrapped on cycles — instantons

 These generate potentials for the axions
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Axion potentials in type |lIB string theory

Instantons generate a potential of the following form:;:
Vaxion ~ » A7 [1 — cos(0; + p1)]

A7 : instanton energy scales

A7 ~ M3 Mgygye 27@rvol(Pa)

Pi: phases set by UV physics (generally assumed O(1))
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A database of string theory axion EFTs

What geometries do we compactify string theory on?

The largest known class comes from a database called the “Kreuzer-Skarke database.”

Up to 10%%° geometries can be constructed from this database.

We use a publicly available package called CYTools to
efficiently generate the data needed for axion effective theories.

A software package for analyzing Calabi-Yau manifolds

CYTools can compute volumes of loops in Calabi-Yau geometries, so we can easily
use It to calculate axion masses and decay constants.
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Cosmological and astrophysical bounds

 Now have the capabillity to construct a semi-realistic axiverse from
compactifications on Calabi-Yau threefolds.

* Are these models ruled out by observations?

e A first study: QCD @-angles in the string axiverse pemiras, NG, Long McAlister, Moritz 21

* | will now present some results on studying axion-photon couplings in this
axiverse.
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How to read off g, ?

Recall our starting Lagrangian:

1 Q4
L=—-K®0,¢,0"pp + 22
2 u®ad” 0 3272

FAF+Y A7[l—cos(2mQf¢a)
1
Toread off g,,.:

1. Canonically normalize kinetic term
2. (Go to mass eigenbasis

1

a Ca%a 1 2 2
_ 92 |
ﬁ_——Z 1 Pa 0" —I—é 3 2F/\FI 2% m. s+ ...

Then:

_ E : 2
Yayy = Ca

Mq SMexp



Axion-photon couplings In lIB string theory




Axion-photon couplings In lIB string theory

Start with axion Lagrangian in terms of Calabi-Yau data:

_ _1 ab v | Q%M¢a
b= R 0u0a0" 00+ o5

FAF+Y A7[l—cos(2mQf¢a)
1



Axion-photon couplings In lIB string theory

Start with axion Lagrangian in terms of Calabi-Yau data:

_ _1 ab L | Q%M¢a
£ = g 0u0adion  —as s

FAF+Y A7[l—cos(2mQf¢a)
1

Goal/question: in a basis where all axions are mass and kinetic eigenstates, what are
the couplings of those axions to ¥ A F?



Axion-photon couplings In lIB string theory

Start with axion Lagrangian in terms of Calabi-Yau data:

_ _1 ab L | Q%M¢a
£ = g 0u0adion  —as s

FAF+Y A7[l—cos(2mQf¢a)
1

Goal/question: in a basis where all axions are mass and kinetic eigenstates, what are
the couplings of those axions to ¥ A F?

Two key facts in type lIB:

1. In the geometric regime, the A? are exponentially hierarchical.
2. There is an E&M instanton.



Axion-photon couplings In lIB string theory
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Two key facts in type lIB:

1. In the geometric regime, the A? are exponentially hierarchical.
2. There is an E&M instanton.

General lesson: only axions heavier than the QED axion couple to photons.

ING, Marsh, McAllister, Moritz 23]
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Lesson: in this landscape, even if we detect an axion, we won’t detect the whole axiverse.

“the Invisible Axiverse”
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A general mechanism

General lesson: only axions heavier than the QED axion couple to photons.
ING, Marsh, McAllister, Moritz '23]

What are the consequences?

Suppose that in the mass eigenbasis, the distribution of decay constants is:

1
ggw ~ Z 72 —® dominated by large fs

all 2

1 .
2
Jammy ™ E | F \ generically
il >mpy suppressed




Axion detection
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Helioscope. m < 1eV
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 CYs are mostly
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o start to push up against
future bounds at large N

e Even In models constrained
by CAST, only a few axions
10 are detectable

ING, Marsh, McAllister, Moritz 23]
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What do we see?

By scanning over tens of thousands of Calabi-Yau compactifications, we find that
as /N increases:

[Halverson, Long, Nelson, Salinas '19; Demirtas, NG, Long, McAllister, Moritz ‘21

° AX|0n_phOtOn COup“ngS Increase NG, Marsh, McAllister, Moritz *23]
¢ Dark matter re“C denSItIeS decrease [Demirtas, NG, Long, McAllister, Moritz ’21]

e The number of axion minima stays @(1) ING, Janssen, Kleban, La Madrid, Mehta "23]
® AXIOH decay COnStantS decrease [Demirtas, Long, McAllister, Stillman ’18;

Demirtas, Long, Marsh, McAllister, Mehta ’20]

e Stringy contributions to the QCD @-angle decrease pemiras, N&, Long, McAlister, Moritz *21]

All of these behaviors are a consequence of one underlying fact:

As N increases, hierarchies in instanton scales increase.
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Stringy axions vs. field theory expectations

Instanton scale hierarchies increase as a function of N.

This leads to correlations between axion physics and the number of axions In
a given theory.

This Is something you would have no reason to suspect in a generic axion theory!

String theory can teach us lessons about axions that we wouldn’t see
from a model-building perspective.
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What drives this behavior?

Key fact: in all explicit studies of the string axiverse, we demand control
of the a’ expansion.

— all divisor volumes must be bigger than 1 in string units.

As N increases:

* Ratios between volumes are constrained, but number of divisors grows icheng, NG wip

* Ensuring that the smallest divisors have volumes >1 entalls that the
largest divisors are huge

Question: is this behavior unigue to Calabi-Yau toric hypersurfaces”?
Or is it a more universal feature, possibly driven by principles of quantum gravity?
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Conclusions

 We constructed an ensemble of axiverses in type |IB string theory

* Hierarchies in Calabi-Yau geometries led to new expectations for the scales of
the problem: as the number of axions increases, the decay constants
decrease.

* |n the models we studied, we calculated the effective axion-photon couplings.
 We found a mechanism that generically suppresses axion-photon couplings.

* Even string theory models with hundreds of axions are not ruled out by axion-
photon coupling experiments.



Thank you!



