The experimental setup of BDF/SHiP proposed for ECN3 CERN Detector Seminar

Daniel Bick

Universität Hamburg

October 13, 2023

▷ c.f. arXiv:1504.04855v1

Heavy Neutral Leptons

UH

No new particles observerd, yet > could be too heavy or too weakly interacting

Image: CERN Courier 2/2016

D. Bick (UHH)

BDF/SHiP Detector

How to the Explore the Hidden Sector?

- Phenomenologies of HS models share a number of unique and common physics features
- \triangleright Production through meson decays (π , K, D, B)
- $\triangleright\,$ Production and decay rates are strongly suppressed relative to SM
 - ${\, \bullet \, }$ Production branching ratios ${\cal O}(10^{-10})$
 - \bullet Long-lived objects $\mathcal{O}(\mu s)$
 - Travel unperturbed through ordinary matter
- Decay into two charged particles

Models	Final States
HNL, SUSY neutralino	$\ell^{\pm}\pi^{\mp},\ell^{\pm}K^{\mp},\ell^{\pm}\rho^{\mp}$
DP, DS, ALP (fermion coupling), SUSY sgoldstino	$\ell^+\ell^-$
DP, DS, ALP (gluon coupling), SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
HNL, SUSY neutralino, axino	$\ell^+\ell^-\nu$
ALP (photon coupling), SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

UH

ΠŤ

- Model independent search for Feebly Interacting Particles (FIPs)
- Production of FIPs in a high intensity proton beam

UHI Ř

- Model independent search for Feebly Interacting Particles (FIPs)
- Production of FIPs in a high intensity proton beam

• Shielding from SM particles: hadron absorber, muon-shield and veto detectors

hann men er sen en sen er s hann er sen er

<text><text><text>

Introduction
 We are units with a life and the state of high life (Million Life (Million

A facility to Branch I 變 Technical Respond A Facility to Search for Hidden Particles (SHIP) at the CERN SPS

10.2013 Eol *×*04.2015 Technical Proposal and Physics Proposal

The Ideo of SHiP

- 10.2013 Eol 🎉
- 04.2015 Technical Proposal and Physics Proposal
- 01.2016 Recommendation by SPSC to proceed to Comprehensive Design Study
- 04.2016 CERN launches Physics Beyond Collider group • SHiP facility included as Beam Dump Facility
- 12.2018 contribution to EPPSU together with BDF progress report to SPSC

The Ideo of SHiP

10.2013 Eol 🎉

- 04.2015 Technical Proposal and Physics Proposal
- 01.2016 Recommendation by SPSC to proceed to Comprehensive Design Study
- 04.2016 CERN launches Physics Beyond Collider group • SHiP facility included as Beam Dump Facility
- 12.2018 contribution to EPPSU together with BDF progress report to SPSC
- 12.2019 CDS reports on BDF and SHiP submitted

10.2013 Eol 🎉

- 04.2015 Technical Proposal and Physics Proposal
- 01.2016 Recommendation by SPSC to proceed to Comprehensive Design Study

04.2016 CERN launches Physics Beyond Collider group • SHiP facility included as Beam Dump Facility

- 12.2018 contribution to EPPSU together with BDF progress report to SPSC
- 12.2019 CDS reports on BDF and SHiP submitted
- 09.2020 CERN launches continued BDF/SHiP R&D
 - Location and layout optimization study recommending ECN3

07.2022 CERN launches dedicated decision process over 22/23 for the future of ECN3

BDF/SHiP Detector

UH

йi

- BDF/SHiP sensitive to a variety of models
- Covers a unique region that can only be explored by an optimized Beam Dump experiment
- Optimize for maximum production of charm, beauty and electromagnetic processes
- SPS energy and intensity provide unique direct discovery potential

- Currently hosting NA62
- Profit a lot from existing infrastructure
- $1\times 10^6\,{\rm spills}$ of $4\times 10^{13}\,{\rm protons}$ per year
- $6 \times 10^{20} \, \mathrm{PoT}$ for SHiP in 15 years

SHiP Implementation in ECN3

- Two complementary detecors: SDN and HSDS
- Low pressure decay vessel optimized for zero-background

D. Bick (UHH)

BDF/SHiP Detector

• Muon Combinatorial Background

- Muon Combinatorial Background
- Muon DIS

- Muon Combinatorial Background
- Muon DIS
- Neutrino DIS
- ${\rm \bullet}\,$ Background from muon and neutrino DIS dominated by random coincidences of secondaries, not $V^0{\rm s}\,$

D. Bick (UHH)

Background Selection and Events

Background estimation based on full GEANT-based MC

Very simple and common selection for both fully and partially reconstructed events

Model independent

Selection	
Track momentum	> 1.0 GeV/c
Track pair distance of closest approach	$< 1 \mathrm{cm}$
Track pair vertex position in decay volume	> 5 cm from inner wall
	> 100 cm from entrance (partially)
Impact parameter w.r.t. target (fully reconstructed)	$< 10 {\rm cm}$
Impact parameter w.r.t. target (partially reconstructed)	$< 250 {\rm cm}$

+Time coincidence +SBT

Events

Background source	Expected events
Neutrino DIS	< 0.1 (fully)/ < 0.3 (partially)
Muon DIS (factorisation) [*] <	5×10^{-3} (fully) / < 0.2(partially)
Muon combinatorial	$(1.3 \pm 2.1) \times 10^{-4}$

• Expected background is < 1 event for 6×10^{20} pot in 15 years of operation

- ECN3: Reduction of transversal size compensated by shortening distance to target
- Many distances object to change (optimization)

UН

Target complex and Target

- High density proton target
 - effectively acting as beam dump and absorber
- Hadron absorber
 - already magnetized as part of muon shield
- First section of muon shield
 - integral part of overall shielding completely surrounding the target system

- Long target made of high A/Z material
 - maximise production of heavy flavored hadrons and photons
 - suppress decay of pions and kaons for cleanest possible background
- 13 blocks TZM
 - (Titanium-Zirconium-doped Molybdenum alloy)
- 5 blocks of pure tungsten
- Cladded by tantalum-alloy
- 5 mm gaps for cooling
- I2 interaction lengths
- Studies for further improvements ongoing by CERN

During CDS phase

<page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

• Prototype built in 2017

- Test in H4 beamline in 2018
- Confirms expected muon flux
- Recent post irradiation confirmed robustness of design

D. Bick (UHH)

BDF/SHiP Detector

Muon Shield

Purpose, Requirements and Challenges

- Deal with $\mathcal{O}(10^{11})$ muons per spill
- Suppress by 6 orders of magnitude!
- \triangleright Sweep out / absorb muons
- Try to keep it short

Technical implementation

- Magnetic muon sweeper
- Alternate polarity scheme
- Shielding already starts in magnetized hadron absorber

BDF/SHiP Detector

Muon Shield Configuration

- ${\, \circ \, {\rm CDS} : \, {\rm length} \, {\sim} 30 \, {\rm m} \, }$
- Reduces muon rate by about six orders of magnitude
- Intensive RP studies for target and shield
- D. Bick (UHH) D. Droblems for electronics

Moving to ECN3

- Reduced space for section in TCC8
- Shorten space between target and experiment
- Smaller experiment while preserving physics reach
- $\, \bullet \,$ Total length (Lol) ${\sim}25 \, {\rm m}$
- ▷ Acceptable rate of muons
 - 67 kHz in SST
 - ${\scriptstyle \bullet \ } 2\,{\rm Hz/cm^2}$ in SND
- ${\scriptstyle \bullet \,}$ SND shorter by $3\,{\rm m}$
- Tracker: $4 \text{ m} \times 6 \text{ m}$,
 - 8 m closer to target

SC/NC Hybrid Muon Shield

- 3 warm magnets and one SC magnet
- Further reduced in length by 5 m comapred to Lol
- HSDS decay volume closer to target by 13 m compared to CDS/ECN4 design

Conservative starting parameters

- $\bullet~$ Core aperture in range $0.5~{\rm m}\times0.5~{\rm m}$ to $1~{\rm m}\times1~{\rm m}$
- Iron/air core field $5 \,\mathrm{T}$ over $4 8 \,\mathrm{m}$
- NbTi @ 4.5 K
- $\bullet ~{\sim}50\,\mathrm{A/mm^2}$
- Low beam related heating (muons) Fluka
- Cooling options under investigation
- Challenge in assembly

Optimization by Machine Learning

- Different configurations with similar performance
 - shows robustness against systematics
 - ${\scriptstyle \bullet}$ engineering studies will be used to select
- ${\, \bullet \, }$ Optimization converges around $21\,{\rm m}$

Optimize for low rate in Tracker and SND acceptance

Shield configuration	Tracker rate [Muons/spill]	Shield length [m]
ECN4	45k	31
ECN3 Combi	160k	26
ECN3 Combi Optimized	67k	26
ECN3 SC Optimized	23k	21

UHI

Take advantage of high neutrino flux emerging the beam dump

SND

- Heavy target for neutrino interactions
- $\triangleright~\mathsf{First}$ observation of $\bar{\nu}_{\tau}$
- $\triangleright~\nu_{\tau},~\bar{\nu}_{\tau}$ physics with high statistics
- $\triangleright \ \nu_{\tau}$ magnetic moment
- ▷ F4 and F5 structure functions
- $\triangleright \ \nu_e$ cross sections
- $\triangleright \ \nu\text{-induced charm production}$
- strange quark nucleon content
- \triangleright LFV
- D LDM via elastic scattering

Purpose, Requirements and Challenges

- Target for LDM/neutrino interactions
- Radial dependence of flux narrow and long neutrino target
- Followed by muon spectrometer
- Target tracker to predict location of neutrino interaction

Technical implementation

- Emulsion Cloud Chamber (ECC)
- Alternated with tungsten plates
- Instrumented with vertexing capabilities

SND – Target Tracker

Requirements

- Position resolution: $100 \, \mu m$
- Time resolution: $50 \, \mathrm{ps}$
- High efficiency (> 99%)

Features

- Provide time stamp to neutrino interactions in the emulsion target
- Link muon track in the emulsion target with the magnetic spectrometer
- High energy muons also tracked in main spectrometer
- Sampling calorimeter for hadronic and electromagnetic energy measurement
- Complement emulsions for neutrino energy reconstruction
- Baseline Option: SciFi trackers

SND – Emulsion Target

- Vertex reconstruction with micrometric accuracy
- Identification of short-lived particle decays
- Momentum measurement with multiple coulomb scattering
- Electromagnetic shower identification with calorimetric technique

Emulsion Cloud Chamber (ECC)
Sensitive Trackers: nuclear emulsions
Passive material: Tungsten plates

- 17 walls
- Total mass: 3.1 t

Emulsion Surface	
• 1 brick: 2.4 m ²	
• 1 wall (4 bricks): $9.6{ m m}^2$	
• Full target (17 walls): $163{ m m}^2$	

D. Bick (UHH)

BDF/SHiP Detector

UHI H

Replacement frequency depends on:

- ${\rm \circ}~{\rm maximum}$ track density in emulsion $<10^6\,{\rm cm}^{-2}$
- background rate

Desired Scenario

- ${\rm \circ}\,$ Background rate $1\,{\rm Hz/cm^2}$
- \triangleright 1 to 2 replacements per year

Emulsions will scanned with micrometer precision in dedicated scanning labs.

Lepton Flavor Identification

- u_{μ} muon reconstruction in spectrometer
- $\nu_e\;$ electron shower identification in the emulsion target
- $\nu_\tau \;\; {\rm disentanglement} \; {\rm of} \; \tau \; {\rm production} \; \\ {\rm and} \; {\rm decay} \; {\rm vertices} \; \\$

- Position resolution of tracking stations: 100 µm in both coordinates
- High efficiency (>99%)
- Baseline option: Drift tubes
- Identify muons produced in neutrino interactions and tau lepton decays
- $\bullet\,$ Measurement of charge and momentum of muons produced in CC interactions and the muonic decay channel of the $\tau\,$
- $\bullet\,$ Air core dipole magnet $1\,{\rm T}$ horizontal field
- Based on AdvSND design to be optimized
- Four tracking stations

Upstream Background Tagger

Purpose, Requirements and Challenges

- Covers front cap window of vacuum vessel
- Tagging of time and position of muons and other charged particles
- ${\, \bullet \, }$ Excellent time resolution $\mathcal{O}(50\,\mathrm{ps})$
- Complementing tracking in SND muon id

Technical implementation

• Multi-gap Resistive Plate Chambers

- Separated by 0.3 mm nylon mono-filaments
- HV electrodes applied to outer surface with airbrush technology
- ${\scriptstyle \bullet }$ Operated at $\pm 9000\,{\rm V}$

UBT Design

- 98% C₂H₂F₄, 2% SF₆,
- Novel approach in design
 - very tight $5\,{\rm cm}^2/{\rm min}/{\rm m}^2$
 - or even sealed RPC technology

UН

iii

Testbeam at CERN

SHiP

- Sandwich of two identical modules
- $\bullet ~~1500\,\mathrm{mm} \times 1200\,\mathrm{mm}$
- $\bullet \ 54\, {\rm ps} \ {\rm resolution}$
- 98% efficiency

HS Decays Vessel and Surround Background Tagger

BDF/SHiP Detector

Purpose, Requirements and Challenges

- Low pressure environment for decay of FIPs
- Detect charged particles entering the vessel side walls from outside
- Detect charged particles produced in the interactions of muons and neutrinos in the vessel walls

Technical implementation

- Pyramidal frustum with stiffening bars
- Cover walls with liquid scintillator

- Fill wall segments with liquid scintillator
- $\triangleright~$ High efficiency: >99.0% for m.i.p.
- \triangleright Good time resolution: $\mathcal{O}(1 \text{ ns})$
- 2000 Segments: Filled with $150\,000\,\ell$ LS (LAB + PPO)
- Light Detectors: 4000 WOMs with SiPM readout

SBT – Wavelength-Shifting Optical Module (WOM)

Transparent PMMA tube

- $60 \text{ mm} \emptyset$, $200 \text{ mm} \leftrightarrow$, 3 mm wall
- Large effective area (compared to photo sensor)
- Low material budget

WLS paint coating: Bis-MSB

- $\,$ o UV / blue absorption [290 $390\,\rm{nm}]$
- ${\, \bullet \,}$ lsotropic visible light emission $[420\,{\rm nm}]$
- Internal total reflection: Up to 75% collection efficiency

SiPM readout

- Hamamatsu S14160-3050HS [450 nm]
- 40 $3\,\mathrm{mm}\times3\,\mathrm{mm}$ SiPM on PCB array

- Proof of principle shown in test beam 2017
- \triangleright time resolution of 1 ns
- Further test beams 2018-2022 with a $120 \text{ cm} \times 80 \text{ cm} \times 30 \text{ cm}$ cell
- Serveral testbeams at CERN and DESY
- Detection efficiency close to 99.9%

0

D. Bick (UHH)

BDF/SHiP Detector

- 4 cell prototype to be tested at PS starting next week
- Improved reflective coating
- Orientation in any direction, cabled motors

HS Spectrometer

Purpose, Requirements and Challenges

- Reconstruct tracks with high precision (better 120 µm)
- Operation in low pressure environment
- Low material budget
- $\, \bullet \,$ Large aperture $4 \, \mathrm{m} \times 6 \, \mathrm{m}$
- Moderate rate $\mathcal{O}(10\,\mathrm{kHz})$

Technical implementation

• Straw Tracker with ultra long tubes

Spectrometer Magnet

- $\bullet~$ Physics aperture $4\,\mathrm{m}\times6\,\mathrm{m}$
- ullet Bending field $0.65\,{
 m Tm}$, nominal on axis ${\sim}0.15\,{
 m T}$
- Integrated in decay vessel
- Initial design: normal conducting option
- Square shaped hollow aluminium coils
- Steel yoke (50mm AISI 100)
- ${\rm \circ}~{\rm Requires}~1.5\,{\rm A/m^2}$
- ${\scriptstyle \bullet}\,$ Power consumption 0.5 to $0.6\,{\rm MW}$
- Intermediate temperature superconductors (e.g. MgB₂)???
 - c.f. CERN Bulletin 11 September 2023
 - To be investigatet

CERN Bulletin 11.09.2023

UH

Straw Tubes

- Ultra-thin, ultra-long straws based on NA62 design.
- longitudinally ultrasonically welded.
 - high strength (pressure tests with 3 bar)
 - no glued layers
 - small gas leakage
 - ▷ suitable for use in vacuum
- Successful operation in NA62.
- Wall thickness 36 µm
- Coating: Au (20 nm), Co (50 nm)
- Diameter: 2 cm
- Length: 4 m

Tracker Stations

- 4 Stations
- $4 \,\mathrm{m} \times 6 \,\mathrm{m}$
- Horizontal operation of straws
- 4 Planers per station
- y-u-v-y setup, stereo angle ${\sim}10^\circ$
- \triangleright 10000 channels

- ${\, \bullet \,}$ Sub-division into modules of $2\,{\rm Straws} \times 32\,{\rm Straws}$
- Horizontal and stereo modules
- Can be produced off site, and later inserted into support frame
- Frame can then be side-loaded into decay vessel

UH

茁

- Hit resolution of short tubes (2 m) was measured in H2 testbeam
- $\triangleright\,$ tested depending on wire eccentricity

 $\, \bullet \,$ Resolution ${<}120\, \mu {\rm m}$ was achieved for wire eccentricities up to ${>}2\, {\rm mm}$

Mechanical Challenges

Main mechanical challenge:

Flowing of Mylar

- Reduction of tension to half over 10 years
- Problem for horizontal tubes
- Additional forces when vessel is evacuated and straws are under pressure

Implications

- Reduced tensions increase gravitational sagging of the straws over time
 - \Rightarrow changing the eccentricity of the wire
 - \Rightarrow electrostatic deflections!
- Reduced tensions relax load on any supporting frame, which would thus unbend
- $\bullet\,$ An unbending frame pulls on the wire, which would thus rupture ($\Delta\ell_{\rm max}\simeq 10\,{\rm mm})$

UΗ

11

• Design option: support by thin carbon cables

- Carbon cable defines sagging.
- Two tubes share one cable, connection every meter.
- Gas distribution inside endplate (zig-zagging through tubes).
- Setup of first prototype with four tubes.
- Great to study long term effects (just started)

Prototype with Four Tubes

D. Bick (UHH)

BDF/SHiP Detector

Prototype with Four Tubes

D. Bick (UHH)

BDF/SHiP Detector

41/51

Prototype with Four Tubes

- Sagging monitored with optical level.
- Wire can be monitored with strong LEDs and optical microscope.
- Stable (working) over four years

- Two different wire diameters (30 μ m and 45 μ m)
- Separate HV supply
- Signal amplified by L3 amplifier (used in OPERA)
- Signal readout by multi channel FADC
 - Auto trigger
 - External trigger (scintillators)
- Measurements with cosmics, Fe55, Sr90

Prototype works and technology is suitable for use in large spectrometer

• Study planed if recording of (simplified) waveforms is beneficial (justifying the cost)

Purpose, Requirements and Challenges

- Reduction of the muon combinatorial background
- Provide time information for straw tubes
- Identification of particle decay products (ToF)
- ${\, \bullet \, }$ Time resolution ${\leq}100\,{\rm ps}$

Technical implementation

• Three columns of vertically staggered scintillator bars

BDF/SHiP Detector

Timing Detector Characteristics

- 3 columns setup with EJ200 plasic bars
- $135 \text{ cm} \times 6 \text{ cm} \times 1 \text{ cm}$, providing 0.5 cm overlap
- Summed readout on both ends by an array of eight $6 \text{ mm} \times 6 \text{ mm}$ SiPMs
- $\bullet \ 330 \ \text{bars} \to 660 \ \text{channels}$

Test Beam at CERN

• Resolution of ${\sim}80\,{\rm ps}$ along the whole length of the bar over $2\,{\rm m}^2$ prototype

D. Bick (UHH)

BDF/SHiP Detector

October 13, 2023

Purpose, Requirements and Challenges

- ${\ensuremath{\,\circ\,}} e/\gamma$ identification
- ${\scriptstyle \circ \ }\pi^0$ reconstruction,
- ${\scriptstyle \circ \ } \gamma$ directionality
- Shower energy and angle

Technical implementation (CDS/ECN4)

- ECAL
- HCAL
- Muon Detector

Purpose, Requirements and Challenges

- ${\ensuremath{\,\circ\,}} e/\gamma$ identification
- ${\scriptstyle \circ \ }\pi^0$ reconstruction,
- ${\scriptstyle \circ \ } \gamma$ directionality
- Shower energy and angle

Technical implementation (CDS/ECN4)

- ECAL
- HCAL
- Muon Detector
- Integrated solution ECAL/PID
- Shorter detector

D. Bick (UHH)

BDF/SHiP Detector

ECAL – SplitCal SHil

- Longitudinally segmented lead sampling calorimeter
- Lead absorber plates $(0.5X_0 \text{ i.e. } 0.28 \text{ cm})$
- $\, \bullet \,$ Sampling layers equipped with scintillating plastic bars, read out by WLS fibres $(0.56\, {\rm cm})$
- \triangleright 40 coarse layers $\rightarrow 20X_0$
- $\, \bullet \,$ Three layers equipped with high resolution detectors (${\sim}200\,\mu\text{m}$ resolution)
- $\triangleright\,$ reconstruct shower barycenter, provide photon angular resolution

Setup has about one nuclear interaction length

- sufficient for e/π separation
- $\, \bullet \,$ not enough for μ/π separation
- $\,\triangleright\,$ Four additional stations of active layers for muon id
 - $\, \bullet \,$ interleaved by $60 \, {\rm cm}$ iron walls
 - iron wall at front protecting form e.m. shower trails
 - thinner iron plate at back shielding from cavern background
- Expected muon id efficiency of >95% in the momentum range of between 5 and $100\,{\rm GeV}$ with a mis-identification rate of 1 to 2 %
- Under study if suitable for SHiP

Accelerator schedule	2022 2023 2024 2025	2026 2027 2028 2029 2030 2031 2032	2033
LHC	Run 3	LS3 Run 4	LS4
SPS (North Area)			
BDF / SHiP	Study Design and prototyping	Production / Construction / Installation Operation	
Milestones BDF	DR studies	PRR SEE	
Milestones SHiP	TDR studies	1 PRR GB	
	1 Approval for TDR	L T Submission of TDRs Facility commissioning	

- Approval in 2023 is critical to ensure timely funding
- ${\sim}3\,{\rm years}$ for detector TDR
- Availability of test beams challenging
- Important to start data taking more than one year before LS4

October 13, 2023

- and CERN Conceptual Design was well covered, more manpower welcome for TDR phase.
- Many young scientists

- 38 institutes from 15 countries

Collaboration

Sub-projects	Main lead	Involved groups
Muon shield		
Muon shield [*]	CERN ³⁰	$RAL(UK)^{38}$, CERN ³⁰ , ++
SND		
Emulsion system	Naples(IT)	LNGS(IT) ¹⁷ , Naples(IT) ^{16,c} , Aichi(JP) ¹⁸ ,
		Kobe(JP) ¹⁹ , Nagoya(JP) ²⁰ , Nihon(JP) ²¹ ,
		Toho(JP) ²² , Gyeongsang(KR) ²³ ,
		Gwangju(KR) ²⁴ , Seoul(KR) ²⁵ ,
		Gyeong Gi-do(KR) ²⁶ , METU(TR) ³³
Target tracker	Lausanne(CH)	$Lausanne(CH)^{31}$, Seigen $(DE)^{12}$
Muon spectrometer	Naples(IT)	$Bari(IT)^{13,a}$, $Naples(IT)^{16,c}$
HSDS		
Decay vacuum vessel $+ caps^*$	Naples(IT)	$Naples(IT)^c$, CERN ³⁰
Spectrometer vacuum vessel [*]	CERN ³⁰	CERN ³⁰
Spectrometer magnet [*]	CERN ³⁰	$CERN^{30}, ++$
Upstream background tagger	Lisbon(PT)	$Lisbon(PT)^{28}$
Surrounding background tagger	Berlin(DE)	Berlin(DE) ⁷ , Freiburg(DE) ⁸ , Juelich(DE) ¹⁰ ,
		$Mainz(DE)^{11}$, $Kiev(UA)^{39}$
Spectrometer tracker	Hamburg(DE)	Hamburg(DE) ⁹ , Juelich(DE) ¹⁰ , Kiev(UA) ³⁹ ,
		CERN ³⁰
Timing detector	Zurich(CH)	$Zurich(CH)^{32}$
Particle identification detectors		Mainz(DE) ¹¹ , Bologna(IT) ¹⁴ , Cagliari(IT) ^{15,b} ,
		Bristol(UK) ³⁵ , ICL(UK) ³⁶ , UCL(UK) ³⁷
Online + offline		
Common electronics and online ^(*)	Orsay(FR)	$Orsay(FR)^6$, $CERN^{30}$
Computing		$CERN^{30}$, Copenhagen $(DK)^5$
Subdetector infrastructure,		Sofia(BG) ¹ , Zurich(CH) ³² , SAPHIR(CL) ² ,
engineering, electronics		$UNAB$ -Santiago $(CL)^3$, ULS -Serena $(CL)^4$,
		$Copenhagen(DK)^5$, $Siegen(DE)^{12}$,
	1	Leiden(NL) ²⁷ Belgrade(RS) ²⁹ Ankara(TR) ³⁴

51/51

- BDF/SHiP provides a clear opportunity to discover FIPs in the decays of heavy mesons.
- $\,$ o Complementary to the FIP searches at HL-LHC and future $e^+e^-\mbox{-colliders}.$
- Robust neutrino physics program, including fundamental tests of SM in tau neutrino interactions.
- A strong concept has been presented after the CDS phase
- Big support from the BDF working group
- Implemented detector into ECN3
- Ready for approval of TDR phase

BDF/SHiP is ready to set sails