MWAPP meeting

Unbinned quasi-model-independent approach to $\boldsymbol{\gamma}$ measurement

Jake Lane

Thursday, 19th October 2023

Paper

These slides are based on the paper I co-authored with Dr. Evelina Gersabeck (Manchester) and Prof Jonas Rademacker (Bristol), on arXiv in May (published in JHEP in September) https://arxiv.org/abs/2305.10787

The University of Manchester

 $D^0 \overline{D}{}^0$ interference in γ measurements Decay amplitude for $D^0(\bar{D}^0) \to f(\mathbf{p}) = A^f_D(\bar{A}^f_D)(\mathbf{p})$, \mathbf{p} is the phase-space for the final state f, decay rate for $B^- \rightarrow D(\rightarrow f(\mathbf{p}))K^-$, $D = (D^0, \overline{D}^0)$: $\Gamma^{-}(\mathbf{p}) \equiv \Gamma(B^{-} \rightarrow D(\rightarrow f(\mathbf{p}))K^{-})$ $\Gamma^{-}(\mathbf{p}) = \left| A_{D}^{f}(\mathbf{p}) + r_{B}e^{i(\delta_{B}-\gamma)}\bar{A}_{D}^{f}(\mathbf{p}) \right|^{2}$ $=\left|A_{D}^{f}(\mathbf{p})\right|^{2}+r_{B}^{2}\left|\bar{A}_{D}^{f}(\mathbf{p})\right|^{2}$ + $2r_B \left| A_D^f(\mathbf{p}) \bar{A}_D^f(\mathbf{p}) \right| \cos \left(\frac{\delta_D^f(\mathbf{p})}{\delta_D(\mathbf{p})} + \delta_B - \gamma \right)$ $\delta_D^f(\mathbf{p}) \equiv \operatorname{Arg}\left(A_D^f(\mathbf{p})\right) - \operatorname{Arg}\left(\bar{A}_D^f(\mathbf{p})\right)$

Relative phase/notation

We are interested in $f(\mathbf{p}) = K_S^0 \pi^+ \pi^-(s_+, s_-)$

$$egin{aligned} &A_D \equiv A_D^{\mathcal{K}_S^0 \pi^+ \pi^-}(s_+,s_-) \ ar{\mathcal{A}}_D^{\mathcal{K}_S^0 \pi^+ \pi^-}(s_+,s_-) &= A_D(s_-,s_+) \equiv ar{\mathcal{A}}_D \ &\delta_D \equiv \delta_D^{\mathcal{K}_S^0 \pi^+ \pi^-}(s_+,s_-) \end{aligned}$$

With *CP* conservation, $\delta_D =$ relative strong phase:

$$\begin{split} \bar{\delta}_D &\equiv \delta_D^{\mathcal{K}_S^0 \pi^+ \pi^-}(\boldsymbol{s}_-, \boldsymbol{s}_+) = -\delta_D \\ \boldsymbol{s}_{\pm} &= \left(\boldsymbol{E}_{\mathcal{K}_S^0} + \boldsymbol{E}_{\pi^{\pm}} \right)^2 - \left| \boldsymbol{p}_{\mathcal{K}_S^0} + \boldsymbol{p}_{\pi^{\pm}} \right|^2 \end{split}$$

Back to $B^{\pm} ightarrow DK^{\pm}$

$$\begin{split} \Gamma^{\pm}(s_{+},s_{-}) &= |A_{D}(s_{\pm},s_{\mp})|^{2} \\ &+ (x_{\pm}^{2} + y_{\pm}^{2})|A_{D}(s_{\mp},s_{\pm})|^{2} \\ &+ 2|A_{D}(s_{\pm},s_{\mp})||A_{D}(s_{\mp},s_{\pm})| \\ &(x_{\pm}\cos\delta_{D} + y_{\pm}\sin\delta_{D}) \\ x_{\pm} + iy_{\pm} &\equiv r_{B}\cos(\delta_{B} \pm \gamma) + ir_{B}\sin(\delta_{B} \pm \gamma) \\ \text{Can obtain } x_{\pm}, y_{\pm} \text{ by maximising the associated} \\ \text{likelihood for } \Gamma^{\pm}(s_{+},s_{-}) \text{ from} \\ B^{\pm} \rightarrow D(\rightarrow K_{S}^{0}\pi^{+}\pi^{-})K^{\pm}, \text{ this is the Model} \\ \text{Dependent (MD) method.} \end{split}$$

Models for $D^0 o K^0_S \pi^+ \pi^-$

Most recent published model was from a combined Belle and BaBar analysis https://arxiv.org/abs/1804.06153

Pros/cons of models

Pros	Cons				
$ A_D $ very well con-	Models do not produce				
strained	reliable results for δ_D				
Optimal statistical pre-	Mismodelling δ_D leads				
cision in γ	to large systematic un-				
	certainties in γ				
Can avoid model systema	tics by moving to a model				
independent measurement of δ_D and γ					

Model independent measurement of δ_D

We split the $K_S^0 \pi^+ \pi^-$ phase-space into bins (see chapter 6 :

https://inspirehep.net/literature/1669241)

Thursday, 19th October 2023

Model independent measurement of δ_D

Define the associated binned parameters

$$F_{i} = \int \int_{i} ds_{+} ds_{-} |A_{D}|^{2}, F_{-i} = \int \int_{i} ds_{+} ds_{-} |\bar{A}_{D}|^{2}$$

$$c_{i} = \frac{1}{\sqrt{F_{i}F_{-i}}} \int \int_{i} ds_{+} ds_{-} |A_{D}| |\bar{A}_{D}| \cos \delta_{D}$$

$$s_{i} = \frac{1}{\sqrt{F_{i}F_{-i}}} \int \int_{i} ds_{+} ds_{-} |A_{D}| \bar{A}_{D}| \sin \delta_{D}$$

Charm threshold experiments

Colliding e^+e^- at $\sqrt{s} = 3.773$ GeV (the $\psi(3770)$ $c\bar{c}$ resonance) just above the $D^0\bar{D}^0$ threshold $(2m_D = 3.730 \text{ GeV})$, one produces quantum correlated $D^0 \overline{D}^0$ pairs from $\psi(3770) \rightarrow D^0 \overline{D}^0 \rightarrow f(\mathbf{p})g(\mathbf{q})$ decays. $\Gamma_{\psi(3770)}(\mathbf{p},\mathbf{q}) \propto rac{1}{2} \left| A^f_D(\mathbf{p}) ar{A}^g_D(\mathbf{q}) - ar{A}^f_D(\mathbf{p}) A^g_D(\mathbf{q})
ight|^2$ BESIII has the largest sample of charm threshold data (2011 : $\int \mathcal{L} dt = 2.93 \text{ fb}^{-1}$) https://arxiv.org/abs/2002.12791 , now has (2023 : 12 fb^{-1} aims to get 20 fb⁻¹ by 2024)

Tagged $D ightarrow K_S^0 \pi^+ \pi^-$ decays

In our case, we already have $f(\mathbf{p}) = K_s^0 \pi^+ \pi^-(s_+, s_-)$, we then choose different 'tag' decays for $g(\mathbf{q})$. $(A_D^g(\mathbf{q}), \bar{A}_D^g(\mathbf{q}))$ Decay Tag type CP even $D \rightarrow K^+K^-$ (1, 1) $D \rightarrow K_{\rm S}^0 \pi^0$ CP odd (1, -1) $D \rightarrow K^{-}\pi^{+}$ D^0 flavour (1, 0) \overline{D}^0 flavour $D \rightarrow K^+ \pi^-$ (0, 1) $D
ightarrow K^0_{\mathsf{S}} \pi^+ \pi^- \mid (\mathcal{A}_D(\mathbf{s}_+, \mathbf{s}_-), \mathcal{A}_D(\mathbf{s}_-, \mathbf{s}_+))$ Double tag

MI measurement of δ_D at charm threshold

Tag	$\langle \textit{N}_i angle \propto$
CP Even	$F_i + F_{-i} - 2\sqrt{F_i F_{-i}} c_i$
CP Odd	$F_i + F_{-i} + 2\sqrt{F_i F_{-i}} c_i$
D^0 flavour	F_i
$ar{D}^0$ flavour	F_{-i}
Double tag (i,j)	$F_iF_{-j} + F_{-i}F_j$ $-2\sqrt{F_iF_iF_{-i}F_{-i}}(c_ic_j + s_is_j)$
Extract c_i and s_i f	rom fitting a Poisson distribution
	of $f(N_i \langle N_i \rangle)$

Back (again) to $B^{\pm} ightarrow DK^{\pm}$

Replace the decay probabiltiy $\Gamma^{\pm}(s_+, s_-)$ with binned version, expected yield per bin *i* from $B^{\pm} \rightarrow D(\rightarrow K_S^0 \pi^+ \pi^-) K^{\pm}$ decays

$$egin{aligned} \mathcal{N}_i^\pm &\propto F_{\pm i} + (x_\pm^2 + y_\pm^2) F_{\mp i} \ &+ 2 \sqrt{F_{\pm i} F_{\mp i}} \left(c_i x_\pm + s_i y_\pm
ight) \end{aligned}$$

Again fit with a Poisson distribution - we call this the binned Model Independent (MI) method

Pros/cons of binning

Pros	Cons
No model dependence -	Acquires a new systematic
zero systematic uncer-	from inputting c_i, s_i - de-
tainty from model	pendent on statistical un-
	certainty of c_i, s_i
Can optimise the binning	Loss of precision is inher-
scheme to minimise statis-	ent to binning $K^0_S \pi^+ \pi^-$ -
tical uncertainty on γ	will show that σ_{γ} increases
	by approximately 20%

Motivation for QMI method

We propose a different approach to both MD and binned method, an unbinned (quasi-) model independent method aka the QMI method. Basic assumptions:

- Models for A_D constrain $|A_D|$ very well but not δ_D treat $|A_D|$ as the 'true' magnitude
- No CP violation in $D o K^0_S \pi^+ \pi^-$ decays
- The difference between the model version of δ_D (δ_D^{model}) and the 'true' δ_D can be closed with a polynomial

The QMI method

Core of the method - define a 'correction' term for δ_D from a model:

$$\delta_D = \delta_D^{\text{model}} + \delta_D^{\text{corr}}$$

Different δ_D^{model} (choice of model) leads to different δ_D^{corr} (correction to the model), hence 'quasi model independent' - δ_D is unaffected by choice of model (as long as the correcting term is accurate)

Setting up $\delta_D^{\rm corr}$

Use a two-dimensional polynomial in (s_+, s_-) , *CP* conservation implies

$$\delta_D^{\mathrm{corr}}(\pmb{s}_+,\pmb{s}_-) = -\delta_D^{\mathrm{corr}}(\pmb{s}_-,\pmb{s}_+)$$

so we define z_{\pm}

$$z_{\pm}=s_{+}\pm s_{-}$$

Setting up $\delta_D^{\rm corr}$

We rotate
$$s_+, s_-$$
 into
 z'_+, z'_- such that $|z'_{\pm}| \le 1$
 $z'_{\pm} = \frac{2z_{\pm} - (z_{\pm}^{\max} + z_{\pm}^{\min})}{z_{\pm}^{\max} - z_{\pm}^{\min}}$

1.00

Thursday, 19th October 2023

Setting up $\delta_D^{\rm corr}$

We then stretch z'_{-} into z''_{-} to avoid varying δ_D^{corr} in regions where there is no data

$$z''_{-} = \frac{2z'_{-}}{z'_{+}+2}$$

Thursday, 19th October 2023

The form of the polynomial

The correcting polynomial of order O is formed out of the free parameters, $C_{i,2j+1}$, defined by the sum

$$\delta_D^{\text{corr}} = \sum_{i=0}^{i \le O} \sum_{j=0}^{j \le \frac{O-i-1}{2}} C_{i,2j+1} p_i(z'_+) p_{2j+1}(z''_-)$$

where $p_n(x)$ is a one-dimensional Legendre polynomial of order n. The odd ordered polynomials in z''_{-} ensure that $\delta_D^{\text{corr}}(z'_+, -z''_-) = -\delta_D^{\text{corr}}(z'_+, z''_-)$.

Simulation studies

We use a modified version of AmpGen to generate and fit to simulated (signal only) decays:

 A_D, δ_D come from the Belle-BaBar 2018 model: https://arxiv.org/abs/1804.06153

BESIII (https://arxiv.org/abs/20	02.12791)	LHCb (https://arxiv.org/a	abs/2010.08483)
$\psi(3770) \rightarrow D^0 \bar{D}^0 \rightarrow K_S^0 \pi^+ \pi^-(s_+, s), g(\mathbf{q})$	Í	$B^\pm o D(o K^0_S \pi^+ \pi^-) K^\pm$	
g	Sample size	Sample size (each sign)	6267
K^+K^-	2546	r_B, δ_B	$0.093, 119.5^{\circ}$
$K_{S}^{0}\pi^{0}$ $K^{-}\pi^{+}$	1725 23457	γ	69.5°
$K^+\pi^-$	23457	$x_{+} + iy_{+}$	-0.092 - 0.015 <i>i</i>
$K^0_S \pi^+ \pi^-$	1833	x + iy	0.060 + 0.071 <i>i</i>

Fitting with the QMI method

In our studies, we replace δ_D with $\delta_D^{\text{model}} + \delta_D^{\text{corr}}$. We then combine both simulation of $\psi(3770)$ and $B^{\pm} \rightarrow D(\rightarrow K_S^0 \pi^+ \pi^-) K^{\pm}$ decays into a single simulatenous fit, constraining $C_{i,2j+1}$ and x_{\pm}, y_{\pm} simultaneously. Following results are from our paper: https://arxiv.org/abs/2305.10787

Precision comparison between methods

Pull studies

We generate N = 100 independent samples of both $\psi(3770) \rightarrow D^0 \overline{D}^0$ and $B^{\pm} \rightarrow DK^{\pm}$ decays, we obtain x_{\pm}, y_{\pm} using the MD, binned MI and QMI methods (show just MD and QMI). The pull of a fitted parameter \pm its calculated uncertainty from the fit $x \pm \sigma_x$ relative to the value of x used to generate the sample, x_0 is

$$\operatorname{pull}(x) \equiv \frac{x - x_{\operatorname{gen}}}{\sigma_x}$$

will ideally follow $pull(x) \sim N(0, 1)$, a standard normal distribution.

Pull results (x_+, y_+) : self-consistency The black bars centre = $\langle \text{pull} \rangle \pm \frac{s(\text{pull})}{\sqrt{N}}$ and edge = $\langle \text{pull} \pm s(\text{pull}) \rangle \pm \frac{s(\text{pull})}{\sqrt{2N}}$, red : ideal unbiased pull

Thursday, 19th October 2023

Pull results (x_-, y_-) : self-consistency

Both unbiased and correct widths

Adding a bias to δ_D

To test if our method can actually account for mismodelling δ_D , define a bias, $f_{\text{bias}}(s_+, s_-)$ and replace the δ_D at the generation stage with $\delta_D^{\text{model}} + f_{\text{bias}}(s_+, s_-)$ then repeat the pull studies

$$f_{ ext{bias}} = A ext{erf}\left(rac{s_- - s_+}{arepsilon}
ight) G(s_+, s_-)$$

where $\operatorname{erf}(x) \equiv \int_{\infty}^{x} e^{-u^2} du$, $G(s_+, s_-)$ is a the product of two Gaussians with means μ_+, μ_- and widths $\sigma_+, \sigma_-, (s_+ < s_- : \mu_{\pm} \to \mu_{\mp}, \sigma_{\pm} \to \sigma_{\mp})$

Bias to δ_D

Thursday, 19th October 2023

Pull study results (x_+, y_+) : $\delta_D + \delta_D^{\text{bias}}$

Thursday, 19th October 2023

Pull study results (x_-, y_-) : $\delta_D + \delta_D^{\text{bias}}$

Thursday, 19th October 2023

Conclusion

- The QMI method is self-consistent (from pull studies without a bias to δ_D)
- The QMI method has similar statistical uncertainty to the MD method (optimal statistical precision)
- The QMI method is able to recover a bias imposed to δ_D , avoiding mismodelling δ_D which biases CKM measurements massively

Backup slides

Thursday, 19th October 2023

Unitarity triangle From https://arxiv.org/abs/2212.03894

(a) Constraints on the Unitarity triangle from UTFit

Thursday, 19th October 2023

Unitarity triangle

- Quark mixing matrix (CKM matrix) must be unitary in the SM : $V^{\dagger}V = 1$
- Construct 'unitarity triangle' in the complex plane
- $e^{i\alpha} = rac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}$, $e^{i\beta} = rac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*}$, $e^{i\gamma} = rac{V_{cd}V_{cb}^*}{V_{ud}V_{ub}^*}$
- $\alpha + \beta + \gamma = 180^{\circ}$ for unitarity
- World average: $\left(\left(85.2^{+4.8}_{-4.3}\right)_{\alpha} + (22.2 \pm 0.7)_{\beta} + \left(65.9^{+3.3}_{-3.5}\right)_{\gamma} \right)^{\circ} = (173 \pm 6)^{\circ}$
- Want sub-degree precision of each angle

Tree level determination of γ

$$\Gamma(B^- o Dh^-) \propto \left| D^0 + r_B e^{i(\delta_B - \gamma)} |\bar{D}^0|^2
ight|^2$$

 $\Gamma(B^+ o Dh^+) \propto \left| \bar{D}^0 + r_B e^{i(\delta_B + \gamma)} D^0 \right|^2$

$D^0 ightarrow K^0_S \pi^+ \pi^-$ decays

- Self conjugate decay mode, both D^0 and \bar{D}^0 decay to the final state, relatively large BF = 2.80%
- Three body decay = two-dimensional phase-space $(N_{\text{dim}} = 3N_{\text{body}} - 7 = 3 \times 3 - 7 = 2)$ $s_{\pm} = (E_{K_S^0} + E_{\pi^{\pm}})^2 - |\mathbf{p}_{K_S^0} + \mathbf{p}_{\pi^{\pm}}|^2$ $\in ((m_{K_S^0} + m_{\pi^{\pm}})^2, (m_{D^0} - m_{\pi^{\pm}})^2)$ $\in (0.406, 2.977) \text{ GeV}^2$

 $D^0
ightarrow K^0_S \pi^+ \pi^-$ decays

Thursday, 19th October 2023

•
$$CP|K_S^0\pi^+\pi^-\rangle = |K_S^0\pi^-\pi^+\rangle$$

Thursday, 19th October 2023

Current precision on γ from $B^{\pm} \rightarrow D(\rightarrow K_S^0 \pi^+ \pi^-) K^{\pm}$

 $From \ https://cds.cern.ch/record/2743058?In{=}en$

• Most precise measurement of γ in a single decay comes from $B^{\pm} \rightarrow D(\rightarrow K_S^0 \pi^+ \pi^-) K^{\pm}$ (GGSZ method)

Projected precision on γ

From https://arxiv.org/abs/1808.08865

Measuring δ_D at charm threshold

For $f(\mathbf{p}) = K_S^0 \pi^+ \pi^-(s_+, s_-)$, we have the correlated probability

$$\begin{split} \Gamma_{\psi(3770)}(\boldsymbol{s}_{+}, \boldsymbol{s}_{-}, \boldsymbol{q}) &= |A_D|^2 |\bar{A}_g(\boldsymbol{q})|^2 + |\bar{A}_D|^2 |A_g(\boldsymbol{q})|^2 \\ &- 2|A_D| |\bar{A}_D| |A_g(\boldsymbol{q})| |\bar{A}_g(\boldsymbol{q})| \\ &(\cos \delta_D \cos \delta_g(\boldsymbol{q}) + \sin \delta_D \sin \delta_g(\boldsymbol{q})) \\ &(1) \end{split}$$

Measuring δ_D at charm threshold

Precision comparison between methods

	$\sigma_{X_{+}}$	σ_{y_+}	$\sigma_{X_{-}}$	$\sigma_{y_{-}}$
	$\times 10^2$	$\times 10^2$	$ imes 10^2$	$\times 10^2$
binned fit (fixed c_i, s_i)	0.886	1.482	1.189	1.328
unbinned QMI	0.780	1.091	0.877	0.945
unbinned MD	0.784	1.081	0.878	0.939

Pull results (x_+, y_+) : self-consistency The black bars centre = $\langle \text{pull} \rangle \pm \frac{s(\text{pull})}{\sqrt{N}}$ and edge = $\langle \text{pull} \pm s(\text{pull}) \rangle \pm \frac{s(\text{pull})}{\sqrt{2N}}$, red : ideal unbiased pull

Thursday, 19th October 2023

Pull results (x_-, y_-) : self-consistency

Both unbiased and correct widths

Pull study results (x_+, y_+) : $\delta_D + \delta_D^{\text{bias}}$

Thursday, 19th October 2023

Pull study results (x_-, y_-) : $\delta_D + \delta_D^{\text{bias}}$

Thursday, 19th October 2023

Other considerations

- What impact does the order of the correcting polynomial have?
- How will this method work in the presence of background?
- What is the optimal order for a correcting polynomial?
- How will increasing $\psi(3770)$ and $B^{\pm} \rightarrow DK^{\pm}$ sample sizes change the outcome of these tests? (BESIII and LHCb will have O(10) and O(100)times more data repsectively (at different time scales)

Order by order - single fit

Order	$\Delta x_+ \cdot 100$	$\Delta y_+ \cdot 100$	$\Delta x_{-} \cdot 100$	$\Delta y \cdot 100$
MD	-0.9 ± 0.8	-1.1 ± 1.1	-1.5 ± 0.9	$+1.0\pm0.9$
1	-0.9 ± 0.8	-1.0 ± 1.1	-1.5 ± 0.9	$+0.9\pm0.9$
2	-0.9 ± 0.8	-1.0 ± 1.1	-1.5 ± 0.9	$+1.0\pm0.9$
3	-0.9 ± 0.8	-1.2 ± 1.1	-1.5 ± 0.9	$+1.1\pm0.9$
4	-0.8 ± 0.8	-1.1 ± 1.1	-1.6 ± 0.9	$+1.2\pm0.9$
5	-0.9 ± 0.8	-1.1 ± 1.1	-1.6 ± 0.9	$+1.2\pm0.9$
6	-0.9 ± 0.8	-1.1 ± 1.2	-1.5 ± 0.9	$+1.1\pm0.9$
7	-0.9 ± 0.8	-1.1 ± 1.2	-1.5 ± 0.9	$+1.1\pm0.9$
8	-0.8 ± 0.8	-1.3 ± 1.2	-1.6 ± 0.9	$+1.3\pm0.9$
9	-0.8 ± 0.8	-1.4 ± 1.2	-1.6 ± 0.9	$\left. +1.3\pm0.9\right.$

Ideal order - unbiased δ_D

Order	$\frac{\langle \chi^2_{\psi(3770)} \rangle}{n^{\rm dof}_{\psi(3770)}}$	$\frac{\langle \chi^2_{B^{\pm}} \rangle}{n^{\text{dof}}_{B^{\pm}}}$	$(x_+ \pm \sigma_{x_+})$	$(y_+ \pm \sigma_{y_+})$	$(x \pm \sigma_{x})$	$(y \pm \sigma_{y})$
	, (,	5	imes100	imes100	imes100	imes100
MD	212.9/241	498.7/502	-10.3 ± 0.8	-2.5 ± 1.1	4.4 ± 0.9	7.9 ± 0.9
1	213.2/238	498.8/500	-10.3 ± 0.8	-2.4 ± 1.1	4.4 ± 0.9	7.8 ± 0.9
2	212.7/235	499.0/498	-10.3 ± 0.8	-2.4 ± 1.1	4.4 ± 0.9	7.9 ± 0.9
3	212.2/229	498.7/494	-10.3 ± 0.8	-2.6 ± 1.1	4.4 ± 0.9	8.0 ± 0.9
4	211.7/223	499.8/490	-10.2 ± 0.8	-2.5 ± 1.1	4.3 ± 0.9	8.1 ± 0.9
5	212.0/214	499.9/484	-10.3 ± 0.8	-2.5 ± 1.1	4.3 ± 0.9	8.1 ± 0.9
6	212.2/205	499.4/478	-10.3 ± 0.8	-2.5 ± 1.2	4.4 ± 0.9	8.0 ± 0.9
7	210.3/193	498.9/470	-10.3 ± 0.8	-2.5 ± 1.2	4.4 ± 0.9	8.0 ± 0.9
8	210.4/181	498.5/462	-10.2 ± 0.8	-2.7 ± 1.2	4.3 ± 0.9	8.2 ± 0.9
9	210.0/166	498.8/452	-10.2 ± 0.8	-2.8 ± 1.2	4.3 ± 0.9	8.2 ± 0.9

Ideal order - biased δ_D

Order	$\frac{\langle \chi^2_{\psi(3770)} \rangle}{n^{\rm dof}_{\psi(3770)}}$	$\frac{\langle \chi^2_{B^{\pm}} \rangle}{n_{B^{\pm}}^{\text{dof}}}$	$(x_+\pm\sigma_{x_+})$	$(y_+\pm\sigma_{y_+})$	$(x \pm \sigma_{x})$	$(y \pm \sigma_{y})$					
		_	imes100	imes100	imes100	imes100					
MD	394.6/241	562.1/502	-7.6 ± 0.8	2.6 ± 1.1	6.9 ± 0.9	3.2 ± 0.9					
1	279.5/238	528.8/500	-8.8 ± 0.8	-0.4 ± 1.0	7.3 ± 0.9	6.1 ± 0.9					
2	276.2/235	529.6/498	-8.7 ± 0.8	-0.5 ± 1.0	7.3 ± 0.9	6.2 ± 0.9					
3	246.8/229	512.4/494	-9.1 ± 0.8	-1.1 ± 1.1	7.0 ± 0.9	7.4 ± 1.0					
4	242.0/223	510.8/490	-9.1 ± 0.8	-1.2 ± 1.0	7.0 ± 0.9	7.6 ± 1.0					
5	237.9/214	508.9/484	-9.2 ± 0.8	-1.3 ± 1.1	7.0 ± 0.9	7.8 ± 1.0					
6	236.0/205	510.7/478	-9.2 ± 0.8	-1.5 ± 1.0	6.9 ± 0.9	7.8 ± 1.0					
7	238.9/193	509.4/470	-9.2 ± 0.8	-1.6 ± 1.0	6.9 ± 0.9	7.9 ± 1.0					
8	237.7/181	508.4/462	-9.2 ± 0.8	-1.7 ± 1.0	7.0 ± 0.9	7.8 ± 1.0					
9	239.0/166	509.5/452	-9.2 ± 0.8	-1.6 ± 1.0	7.0 ± 0.9	7.8 ± 1.0					
Optir	Optimal order seems to be $O = 6$										

Alternate sample sizes - MD and MI

LHCb	σ_{x_+}	· 10 ²	σ_{y_+} .	$\cdot 10^{2}$	$\sigma_{x_{-}}$	$\cdot 10^{2}$	$\sigma_{y_{-}}$	$\cdot 10^{2}$	σ_{γ}	(°)
Lumi	MD	bin	MD	bin	MD	bin	MD	bin	MD	bin
$\times 1$	0.780	0.886	1.081	1.482	0.878	1.189	0.939	1.328	4.23	5.09
×100	0.078	0.089	0.108	0.149	0.088	0.118	0.093	0.134	0.42	0.52

Alternative sample sizes - QMI

Lumi s	cenario:					
LHCb	BESIII	$\sigma_{x_+} \cdot 10^2$	$\sigma_{y_+} \cdot 10^2$	$\sigma_{x_{-}} \cdot 10^2$	$\sigma_{y} \cdot 10^2$	σ_{γ} (°)
$\times 1$	$\times 1$	0.780	1.091	0.877	0.945	4.21
imes1	imes10	0.773	1.062	0.866	0.924	4.18
$\times 100$	imes1	0.079	0.122	0.090	0.104	0.45
imes100	imes10	0.078	0.115	0.089	0.099	0.43

